GENETIC SCREENING FOR COMMON ALPHA THALASSEMIA MUTATIONS IN CORD BLOOD SAMPLES AMONG EGYPTIAN NEWBORNS

Thesis
Submitted In The Partial Fulfillment Of
M.D Degree Of Clinical & Chemical Pathology

By

*Khaled El Sayed Mohamed El Zohairy*MB.B.Ch. & M.Sc. of Clinical & Chemical Pathology

Supervisors

*Dr. Samia Hassan Rizk*Professor of Clinical & Chemical Pathology
Cairo University

Dr. Shahira Amin Zayed
Professor of Clinical & Chemical Pathology
Cairo University

Dr. Mona Azziz Ibrahim
Professor of Clinical & Chemical Pathology
Cairo University

Faculty of medicine Cairo University 2008

Dedication

TO MY FAMILY

Acknowledgements

Words fail to express my deep thanks and sincere gratitude to Prof. Dr. Samia Hassan Rizk, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University. I am greatly honored and pleased to have had the opportunity to learn from her. I am greatly indebted to her. I do not know how to thank her for her endless patience, continuing encouragement and complete support. I think Allah only who can reward her.

I would like to express my deep thanks and honest gratitude to Prof. Dr. Shahira Amin Zayed, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, for her great help and guidance throughout this work.

Also I am deeply grateful and indebted to Prof. Dr. Mona Azziz Ibrahim, Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, for her great help, generous cooperation, remarkable sharing, valuable advices, and patience throughout this work.

Khaled AlZohairy

Contents

Subjects	Page
List of Tables	IX
List of Figures	XI
Introduction and aim of work	1
Review of Literature	5
Chapter One: Hemoglobin	5
1. Normal Hemoglobins	5
1.a. Post-neonatal Hemoglobins	5
1.b. Developmental Hemoglobins	6
2. Hemoglobin structure	7
2.a. Primary structure of hemoglobin chains	9
2.b. Secondary structure	9
2.c. Tertiary structure of α and β chains	10
2.d. Quaternary structure	11
3. Genetics	12
3.a. β-like Globin Gene Cluster	12
3.b. A-like Globin Gene Cluster	12
3.c. Structure of Gene Clusters	14
3.d. Gene Expression	15
4. Synthesis	16
5. Physiology	17
Chapter Two: Alpha Thalassaemia	23
1. Hemoglobinopathies	23
2. Epidemiology	24
Etiology and Molecular Pathology	28
4. Pathophysiology	36
5. Clinical presentation.	39
G. Laboratory factures	41
7. Differential diagnosis	45
8. Diagnosis	46
9. Treatment	47
10. Prognosis	48
11. Prevention.	49
Chapter Three: Studies On Alpha Thalassaemia	51
1. International Research	51
1.a. Survey studies	51
1.b. Multiplex Technique As A Tool For Diagnosis	58
1.c. New techniques for screening alpha thalassemia	59
1.d. The relation between α thalassemia & malaria	61
1.e. Other fields of research work	62
2 National Studies	65

3. Research in the Arab world	65
Subjects and Methods	75
Subjects	75
Methods	75
Sample collection and handling	75
Complete blood count	75
Hemoglobin electrophoresis	75
Principle	76
Equipment	76
Reagents	76
Procedure	77
Interpretation and comments	78
Detection of DNA	79
1. DNA extraction	79
Principle	79
Reagents	79
Procedure	82
2. Co-amplifying α-globin genes in a single PCR	84
3. Detection of the amplification products	85
Reagents	85
Preparation of agarose gel	86
Sample preparation and loading	88
Performing the electrophoresis	88
Visualization of amplification products	89
Statistical analysis	89
Results	91
1. Introduction	91
2. Prevalence of α thalassemic subjects in the current	91
study	
3. Comparison of electrophoresis results with multiplex	95
PCR data	
4. Comparison of CBC results with multiplex PCR data	95
Discussions	111
Conclusions	127
Recommendations	129
English Summary	131
References	135
Arabic Summary	147

Abbreviation list

2,3-BPG 2,3-bisphosphoglycerate

Arg Argenine
ASN Antisense
Asp Aspartic acid

ATMDS Alpha thalassemia with myelodysplastic syndrome
ATR-16 Alpha thalassemia mental retardation 16 syndrome

ATRX Alpha thalassemia x linked mental retardation syndrome

Bp Base pair

CBC Complete blood count CMC Carboxymethyl cellulose

CS Constant Spring

CTR Cardio thoracic ration

Cys Cysteine

DC Dissociation curve

DHPLC Denaturation High performance liquid chromatography

DNA Deoxyribonucleic acid

ECFCS Erythroid colony forming cells

Fil Filipino

FOG1 A type of transcription factors
GATA A family of transcription factors
GATA1 A type of transcription factors

Gln Glutamine
Glu Glutamic acid

Gly Glycine

Hb Hemoglobin

HbA Adult hemoglobin
HbF Fetal hemoglobin

Hct Hematocrit (packed red cell volume)

His Histidine

Hph 5 bp deletion involving the 5' splice junction of IVS1

HPLC High performance liquid chromatography

IDA Iron deficiency anemia

Ig Immunoglobulin
IM Intramuscular
IV Intravenous

IVS Intervening sequence

Kb Kilobase

Kbp Kilo base pair

LCR Locus control region

Leu Leucine Lys Lysine

MCH Mean corpuscular hemoglobin

MCHC Mean corpuscular hemoglobin concentration

MCV Mean corpuscular volume MDS Myelodysplastic syndrome

MED Mediterranean

PA-1 Poly A1

PCR Polymerase chain reaction

Pro Proline PS Paksé

QF-PCR Quantitative fluorescence polymerase chain reaction

QS Quong Sze

RBC Red blood cells

RDW Red cell distribution width

RFLP Restriction fragment length polymorphism

RNA Ribonucleic acid

RP-HPLC Reverse phase high performance liquid chromatography

SEA South Eeast Asia

Ser Serine SN Sense

SSM Slipped strand mispairing

STR Short tandem repeat
Ter Termination codon

Thai Thailand

THAL Thalassemia

Tyr Tyrosine

UAE United arab emirates
UTR Untranslated region

Val Valine

List of Tables

No.	Content	Page
1	Change in properties of abnormal hemoglobins and its pathophysiological consequences	24
2	Different α thalassemia Clinical Syndromes, genotypes and nomenclature	29
3	Examples of non-deletional mutantions of α genes that cause hemoglobinopathies showing α thalassemia	35
4	Number of α thalassemic cases and their percentage among the selected subjects	92
5	The frequency of different gene deletions among the studied neonates	93
6	A comparison between cases with detected α gene deletions and normal ones regarding RBC count	96
7	A comparison between cases with detected α gene deletions and normal subjects regarding hemoglobin level	96
8	A comparison between subjects with detected α gene deletions and normal subjects regarding Hct	96
9	A comparison between neonates with detected α gene deletions and normal neonates regarding MCV	99
10	A comparison between cases with detected α gene deletions and normal ones regarding MCH	99
11	A comparison between cases with detected α gene deletions and normal ones regarding MCHC	102
12	A comparison between cases of a single and double gene deletions regarding their RBC count	102
13	A comparison between cases of single and double gene deletions regarding their hemoglobin level	102
14	A comparison between cases of single and double gene deletions regarding their hematocrit	103
15	A comparison between cases of single and double gene deletions regarding their MCV	103

No	Content	Page
16	A comparison between cases of single and double gene deletions regarding their MCH	103
17	A comparison between cases of single and double gene deletions regarding their MCHC	105
18	A comparison between the two different genotypes with 2 α gene deletions regarding their RBC count	105
19	A comparison between the two different genotypes with 2 α gene deletions regarding their hemoglobin level	106
20	A comparison between the two different genotypes with 2 α gene deletions regarding their hematocrit percent	106
21	A comparison between the two different genotypes with 2 α gene deletions regarding their MCV	106
22	A comparison between the two different genotypes with 2 α gene deletions regarding their MCH	107
23	A comparison between the two different genotypes with 2 α gene deletions regarding their MCHC	107
24	A comparison between α thalassemia 2 and α thalassemia 1 carriers as regards to red cell count	107
25	A comparison between α thalassemia 2 and α thalassemia 1 carriers as regards to hemoglobin level	108
26	A comparison between α thalassemia 2 and α thalassemia 1 carriers as regards to hematocrit	108
27	A comparison between α thalassemia 2 and α thalassemia 1 carriers as regards to MCV	108
28	A comparison between α thalassemia 2 and α thalassemia 1 carriers as regards to MCH	109
29	A comparison between α thalassemia 2 and α thalassemia 1 carriers as regards to MCHC	109
30	The frequency of different gene deletions among the α gene deletion group	117

List Of Figures

No.	Content	Page
1	Structure of normal hemoglobin molecule	8
2	Arrangement of globin genes on the 11 and 16 chromosomes	13
3	Distribution of α thalassemia1 and α thalassemia2 throughout the world	25
4	Common deletions in the α globin gene cluster	31
5	Mode of inheritance of α^0 thalassemia trait	33
6	The frequency of different α gene deletions	94
7	A comparison between the normal gene group and gene deleted group as regards to Hb	97
8	A comparison between the normal gene group and gene deleted group as regards to Hct	98
9	A comparison between neonates with detected α gene deletions and normal ones regarding MCH	100
10	A comparison between cases with detected α gene deletions and normal subjects regarding MCHC	101
11	A comparison between the hematocrit percentage in group [A] with one deletion & group [B] with two deletions.	104
12	Gel electrophoresis of PCR products from different α	110
	globin genotypes	110