

Tubeless Percutaneous Nephrolithotomy With and Without Fibrin Glue Sealant

Thesis
Submitted in partial fulfillment of
M.D Degree in Urology

By

Ahmed Tawfick Hassan

M.B. B.ch., Ain Shams University M. Sc. Degree in Urology, Ain Shams University

Under the Supervision of

Prof. Dr. Mohamed Tarek Mohamed Fathy Zaher

Professor of Urology Ain Shams University

Ass. Prof. Dr. Mohamed Shokry Shoeib

Assistant Professor of Urology Ain Shams University

Dr.Samir Sayed Muhammad Azazy

Lecturer of Urology
Ain Shams University

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY 2013

LIST OF CONTENTS

Title	Page No.		
Introduction	1		
Aim of the work	3		
Review of literature			
Endourologic Anatomy Of The Kidney	4		
Indications of PNL	23		
Surgical Technique	28		
Tubeless PNL	50		
Complications of PNL	60		
Fibrin Glue	76		
Patients and methods			
Results	97		
Discussion	114		
Summary and conclusions	124		
References	126		
Arabic summary			

LIST OF FIGURES

ig. No	. Title	Page No
1:	Anterior view of the kidneys in relation to the skeleton	n5
2:	Superior view of a transverse section of the kidneys.	5
3:	Organization of the fat and fascia surrounding the kidney	
4:	Lateral view of a longitudinal section through the retroperitoneum	
5:	Superior view of a transverse section of the kidneys	8
6:	Schematic drawing from a lateral view of the kidner and its relationships with the diaphragm, ribs, pleura and lung	l,
7:	Sagittal CT image showing the retrorenal position of the descending colon	
8:	Internal structure of the kidney	12
9:	Elements of kidney collecting system	13
10:	The possibilities of minor calyx arrangement	13
11:	How 14 primitive lobes fuse to drain into 8 calyces	14
12:	Calyceal orientations in the Brödel and Hodson configurations	
13:	Arterial supply of the kidney	17
14:	Intrarenal arterial anatomy	18
15:	Anterior view of left kidney endocast of the pelvicalyceal system together with the venou vascular tree	

LIST OF FIGURES (Cont...)

Fig. No.	Title	Page No.
16:	Sections of a right kidney demonstrates an intrarenal puncture performed through a caliceal infundibulum	
	and through a caliceal fornix	
17:	Supracostal upper pole puncture	
18:	A lower pole puncture	36
19:	Eye of needle technique for percutaneous access	37
20:	Triangulation fluoroscopic guidance	37
21:	Safety wire introducer set an 8/10-Fr coaxial sheath system	
22:	Schematic view of supine PNL	49
23:	The Dual lumen Kaye tamponade nephrostomy tube .	62
24:	Montreal mattress and helmet system	75
25:	Formation of fibrin glue	77
26:	Dual lumen catheters for fibrin injection	80
27:	Ureteric catheter application	85
28:	Kidney puncture	86
29:	Gide wire advanced	87
30:	Tract dilatation	88
31:	Stone retrieval	89
32:	Stone clearance by fluoroscopy	89
33:	Retrograde at the end of the procedure	90
34:	After suture	91
35:	After fibrin glue injection	91
36:	Component 1 fibrinogen after preparation	94

LIST OF FIGURES (Cont...)

Fig. No.	Title	Page No.
37:	Component II thrombin and calcium chloride	95
38:	Fibrin glue after prepared	95
39:	Gender	98
40:	Mean age	98
41:	Medical & surgical comorbidities	99
42:	Stone size	100
43:	Stone side and opacity	101
44:	Stone number	101
45:	Stone site	103
46:	Puncture site and number	105
47:	Intra operative blood loss	106
48:	Stone free rate & auxiliary procedure	108
49:	Mean hospital stay in hours	108
50:	Post operative complication	109
51:	Pain scale	110
52:	Post operative blood loss	111
53:	Total blood loss	113

LIST OF TABLES

Гаb. No.	Title P	'age	No.
1:	Personal data, medical comorbidity and previous		
	renal surgery		97
2:	Stone character	(99
3:	Stone site		102
4:	Puncture number & site		104
5:	Mean blood loss intraoperative		105
6:	Stone free rate, auxiliary procedure, hospital stay		107
7:	Post-operative complication		109
8:	Pain score		110
9:	Post-operative blood loss		111
10:	Total blood loss		112

LIST OF ABBREVIATIONS

CIRF Clinically insignificant residual fragment

CLD Chronic liver disease

Cm Centimeter

CT Computed tomography

DM Diabetic mellitus

ESWL Extracorporeal shock wave lithotripsy

FG Fibrin glue

Fig Figure

Fr French

g Gram

h Hour

Hb Hemoglobin

HS Highly significant

HTN Hypertension

HU House field unit

INR International normalized ratio

IV Intravenous

IVC Inferior vena cava

IVU Intra venous urography

KUB kidney ureter and bladder

LIST OF ABBREVIATIONS (Cont...)

min Minute

ml Millimeter

mM Millmole

N Number

NS Non significant

Op Operative

PCS Pelvicalyceal system

PNL Percutaneous nephrolithotomy

RFs Residual fragments

rpm Revolution per minute

S Significant

SD Standard deviation

Sig level of significance

TFE Tetrafluoroethylene

UPJ Uretropelvic junction

URS Ureteroscopy

U/s Ultrasonography

UTI Urinary tract infection

Acknowledgment

First and foremost, I thank ALLAH, the most merciful for guiding me through and giving me the strength to complete this work the way it is.

It is a pleasure to express my deepest thanks and profound respect to my honored professor, **Professor Dr.**Mohamed Tarek Mohamed Fathy Zaher, Professor of urology, Ain Shams University, for his continuous encouragement and valuable supervision and guidance throughout this work

With considerable appreciation, I express my greatest thanks and sincere respect to Ass. Prof. Dr. Mohamed Shokry Shoeib Assistant Professor of Urology, Ain Shams University, for his kind supervision, active support and continuous encouragement throughout this work...

Words cannot suffice my sincere thanks and gratitude to **Dr. Samir Sayed Muhammad Azazy**, lecture of urology, Ain Shams University, for his great help and support and his continuous guidance, correction and explanation throughout the course of this work I wish to be able one day to return to him a part of what he had offered to me.

No words could adequately express my deepest appreciation to my family, for their continuous support. I shall remain indebted to them all my life.

Special thanks to **my colleages**, wishing them a happy and healthy life.

Introduction 1

Introduction

Since first removed a renal calculus through a nephrostomy tract in 1976, the technique of percutaneous nephrolithotomy PNL has significantly changed and is continuing to evolve. PNL is now a popular method for removal of renal and ureteral stones (*Jou et al.*, 2004).

Placement of a nephrostomy tube after the completion of PNL has been considered as a standard procedure. The purpose of nephrostomy tube is to allow the renal puncture to heal, provide proper drainage of urine, tamponade of bleeding and permit access to the collecting system if a secondary procedure is required (*Winfield et al.*, 1986).

Tubeless PNL has been found to be feasible and safe in selected patients. However, it is still considered by many to be adventurous and risky (*Shah et al.*, 2006) (a).

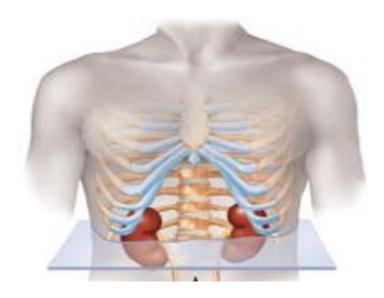
Despite these advantages, the nephrostomy tube has been implicated in postoperative pain, leakage and prolonged hospital stay. To reduce this tube related complication, modifications have been described like the use of a smaller nephrostomy tube as in mini-PNL (*Jackman et al.*, 1998) (a), or use of an external ureteric catheter or J-stent instead of nephrostomy catheters; this has since become known as tubeless PNL (*Tefekli et al.*, 2006), or no ureteric stent have been implemented; this is called totally tubeless PNL (*Crook et al.*, 2008).

Introduction 2

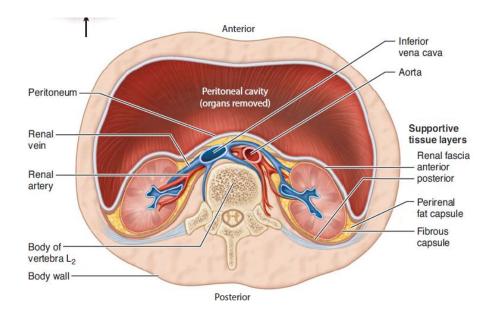
Instillation of a hemostatic agent as fibrin along the percutaneous tract may act as an adjuvant to tubeless PNL by minimizing hemorrhage and urinary extravasation in the postoperative period (*Noller et al.*, 2004).

Aim Of The Work

The aim of this work is to present our experience, evaluate tubeless PNL and to assess fibrin glue as a sealant agent in tubeless PNL.


Endourologic Anatomy Of The Kidney

General Anatomy


The kidneys are paired organs lie retroperitoneal on the posterior abdominal wall. They extend from the level of the 11th or 12th thoracic vertebra superiorly to the 3rd lumbar vertebra inferiorly with the right slightly lower due to the presence of the liver. The lateral surface of each kidney is convex; the medial surface is concave and has a vertical cleft called the renal hilum, which is bounded by anterior and posterior lips and contains the renal vessels and nerves and the renal pelvis. The relative positions of the main hilar structures are the renal vein (anterior), the renal artery (intermediate) and the pelvis of the kidney (posterior). On the superior part of each kidney lies an adrenal (suprarenal) gland (Fig. 1). (Marieb et al., 2012).

Position of the Kidneys

As the kidneys lie retroperitoneal against the psoas major muscles; their longitudinal axis parallels the oblique course of the psoas (**Fig. 1**). As the hilar region is rotated anteriorly on the psoas muscle, the lateral borders of both kidneys are posteriorly positioned. It means that the kidneys are angled 30 to 50° behind the frontal (coronal) plane (**Fig. 2**). Therefore, the superior poles are more posterior than the inferior poles. So ,the distance from skin to collecting system is shortest at the upper pole and greatest at the lower pole of the kidney (*Kim and Clayman*, 2006).

Fig. 1: Anterior view of the kidneys in relation to the skeleton, shows the longitudinal axes of the kidneys are oblique . (*Marieb et al.*, 2012)

Fig. 2: Superior view of a transverse section of the kidneys shows that the kidneys are angled 30 to 50° behind the frontal (coronal) plane. (*Marieb et al.*, *2012*)