AN EXPERT SYSTEM FOR MANAGING ON-FARM IRRIGATION WATER OF SOME OIL CROPS

By

KAMEL MOHAMED EL-TOHAMY MOHAMED

B. Sc. Agric. Sc. (Agricultural Engineering), Benha University, 2010

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In

Agriculture Science (On-Farm Irrigation and Drainage Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

Approval Sheet

AN EXPERT SYSTEM FOR MANAGING ON-FARM IRRIGATION WATER OF SOME OIL CROPS

By

KAMEL MOHAMED EL-TOHAMY MOHAMED

B. Sc. Agric. Sc. (Agricultural Engineering), Benha University, 2010

This thesis for M.Sc. Degree has been approved by:

Date of examination: 21/5/2016

Dr.	Magdy Tawfyk EL-Tantawy
	Chief of Researches, Agricultural Engineering Research Institute
	(AEnRI), Agricultural Researches Center (ARC).
Dr.	Yasser Ezzat Arafa
	Associate Prof. of Agricultural Engineering, Faculty of
	Agriculture, Ain Shams University.
Dr.	Khaled Faran El-Bagoury
	Associate Prof. of Agricultural Engineering, Faculty of
	Agriculture, Ain Shams University.
Dr.	Ahmed Abo El-Hassan Abdel-Aziz
	Prof. of Agricultural Engineering, Faculty of Agriculture, Ain
	Shams University.

AN EXPERT SYSTEM FOR MANAGING ON-FARM IRRIGATION WATER OF SOME OIL CROPS

By

KAMEL MOHAMED EL-TOHAMY MOHAMED

B. Sc. Agric. Sc. (Agricultural Engineering), Benha University, 2010

Under Supervision of:

Dr. Ahmed Abo El-Hassan Abdel-Aziz

Prof. of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Khaled Faran El-Bagoury

Associate Prof. of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

Dr. Mona Ahmed Mohamed Soliman

Research Prof. of Water Relations and Field Irrigation, Department of Water Relations and Field Irrigation, National Research Centre.

ABSTRACT

Kamel Mohamed El-Tohamy Mohamed: An Expert System for Managing On-Farm Irrigation Water of Some Oil Crops. Unpublished M.Sc. Thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2016.

Accurately estimation of actual crop evapotranspiration (ET_a) as a parameter of irrigation scheduling is very critical for efficient use of limited irrigation water resources. The objectives of this study were to (1) build, verify and validate an expert system for managing on-farm irrigation water of some oil crops under Egyptian conditions, (2) evaluate the precision of dual-K_c approach for estimating the daily actual crop evapotranspiration (ET_a) and compare it with the single-K_c approach, and (3) study the effect of the precise estimation of daily actual crop evapotranspiration on maximizing yield and improving water use efficiency.

Α rule-based IMOC-ES program named (Irrigation Management for some Oil Crops-Expert System) was coded and compiled using Microsoft visual basic 2013 language. The program was verified using two ready-to-use software programs (CropWat-8 and ETo Calculator-3.2) for estimating the daily reference evapotranspiration and a spreadsheet named (FAO56Ax8.xls) introduced by FAO-56 for estimating the irrigation water management parameters. It also was validated by carrying out a field experiment at the Experimental Farm of Agricultural Production and Research Station (APRS), National Research Centre (NRC), El Nubaria District, El-Behaira Governorate, Egypt for a growing summer season of 2014. The experiment included the following factors: a) two approaches for estimating crop

evapotranspiration (single-K_c and dual-K_c), b) two irrigation systems (surface drip irrigation and subsurface drip irrigation), and c) two oil seed crops (peanut and sesame).

Results of the investigation indicated that it is possible to use the IMOC-ES rule-based program for estimating the irrigation water management parameters accurately. In addition, some of the observed results can be summarized as following:

- 1. The estimation of actual crop evapotranspiration (ET_a) using dual crop coefficient approach was more accuracy compared to single-K_c approach.
- 2. The seasonal cumulative ET_a estimated by dual-K_c approach overestimated that estimated by single-K_c approach under surface drip irrigation by 13.20 % for peanut and 21.90 % for sesame. While under sub-surface drip irrigation, the dual-K_c approach overestimated the single-K_c approach by 4.42 % for peanut and 17.64 % for sesame.
- 3. Yield: the highest seed yield of peanut (2.23 ton fed⁻¹) and sesame (0.66 ton fed⁻¹) were obtained with the interaction (sub-surface drip irrigation × dual-K_c).
- 4. Water use efficiency: the maximum value of water use efficiency for peanut (0.66 Kg m⁻³) and sesame (0.23 Kg m⁻³) were recorded with the interaction (sub-surface drip irrigation × dual-K_c).

Keywords: Irrigation scheduling, actual crop evapotranspiration, dual crop coefficient, single crop coefficient, drip irrigation, seed yield, water use efficiency, peanut, sesame.

ACKNOWLEDGMENT

First of all, glory, praise, and gratitude are due to almighty Allah for supporting me all the way to the conclusion of this work.

I would wish to express deep thanks and appreciation and sincere gratitude to prime supervisor **Dr. Ahmed Abo El-Hassan Abdel–Aziz,** Professor of Agricultural Engineering, Faculty of Agric., Ain Shams University, for supporting research, continuous scientific help, valuable suggestions, revising the thesis and recommendation.

I would wish to express my deep thanks and sincere appreciation to **Dr. Khaled Faran El-Bagoury**, Assoc. Prof. of Agricultural Engineering, Faculty of Agric., Ain Shams University, for suggesting the problem, continuous scientific help, supervision, generous encouragement, and revising the manuscript.

Sincere gratitude is also extended to **Dr. Mona Ahmed Mohamed Soliman**, Research Prof. of Water Relations and Field Irrigation, Department of Water Relations and Field Irrigation, National Research Centre, for possible help and guidance, kindly supervision, continuous support, and sincere criticism throughout the period of study.

I would wish to express my greatest appreciation and deepest gratitude to **Dr. Sabreen Khalil Pibars**, Assoc. Prof. of Agricultural Engineering, Department of Water Relations and Field Irrigation, National Research Centre, for her great efforts

during the preparation of this work, supervision, generous encouragement, providing me with all required facilities and experience, in addition to revising the manuscript.

Great thanks to all my colleagues of Water Relations and Field Irrigation Dept., National Research Centre, as well as, all who had lent me a hand to complete this work.

I would wish to express my special and great thanks to my wife. She is always supporting, encouraging and providing me with an excellent atmosphere for doing research.

Finally, great thanks to **mother**, **father** and all members of my family for their support and attention.

CONTENTS

		Page
	LIST OF TABLES	
	LIST OF FIGURES	
	LIST OF PLATES	
I	INTRODUCTION	1
II	REVIEW OF LITERATURE	3
2.1	Expert system (ES)	3
2.1.1	Definitions of expert system	3
2.1.2	Advantages and disadvantages of ES	3
2.1.3	Expert systems components	4
2.1.4	Expert system developing languages	6
2.1.5	Verification and validation processes of the expert	
	system	7
2.2	Irrigation management	8
2.2.1	Evapotranspiration (ET)	9
2.2.1.1	Reference evapotranspiration (ET _o)	10
2.2.1.2	Crop coefficient (single-Kc and dual-Kc)	11
2.3	Oil seed crops (peanut and sesame)	14
2.4	Applications of ES on irrigation management	15
Ш	MATERIALS AND METHODS	17
3.1	Materials	17
3.1.1	Building up of IMOC-ES program	17
3.1.1.1	User interface	17
3.1.1.2	Structure of IMOC-ES	17
3.1.1.3	Database	19
3.1.2	Description of the IMOC-ES program	20
3.1.2.1	The opening screen	20
3.1.2.2	Input	20
3.1.2.2.1	Climatic data	20
3.1.2.2.2	Crop data	20

3.1.2.2.3	Soil data	20
3.1.2.2.4	Irrigation options	21
3.1.2.3	Output	21
3.1.3	Verification of the developed ES	26
3.1.4	Validation of the developed ES	26
3.1.4.1	Experimental site description	26
3.1.4.2	Soil properties and irrigation water analysis	26
3.1.4.3	Irrigation system and experimental layout	28
3.1.4.4	Crop types	32
3.1.4.5	Meteorological data	33
3.2	Methods	35
3.2.1	The formulas used by the program	35
3.2.1.1	Evapotranspiration (ET)	35
3.2.1.1.1	Reference evapotranspiration (ET _o)	35
3.2.1.1.2	Crop evapotranspiration (ETc)	36
3.2.1.1.2.1	Single crop coefficient (single-K _c)	36
3.2.1.1.2.2	Dual crop coefficient (dual-Kc)	37
3.2.1.1.3	Actual crop evapotranspiration (ETa)	39
3.2.1.2	Irrigation requirements (IR)	40
3.2.2	Seed yield	40
3.2.3	Water use efficiency (WUE)	40
3.2.4	Statistical analysis	41
3.3	The experimental design	41
IV	RESULTS AND DISCUSSION	43
4.1	Reference evapotranspiration (ET _o)	43
4.1.1	Verification of the developed ES for estimating	43
4. 2	Crop coefficient (Kc)	45
4.2.1	Verification of the developed ES for estimating	
	adjusted Kc	45
4.2.2	Dual crop coefficient (dual-K _c) curve	45
4.2.3	Dual-Kc versus single-Kc	49

4.3	The IMOC-ES program application	52
4.4	Actual crop evapotranspiration (ET _a)	57
4.4.1	Verification of the developed ES for estimating ETa	57
4.4.2	The seasonal ET_a using (single- K_c and dual- K_c)	57
4.4.3	The effect on seed yield and water use efficiency	62
4.5	Irrigation system (SDI and SSDI)	63
4.5.1	Verification of the developed ES for estimating	
	irrigation depth (/)	63
4.5.2	The effect on seed yield and water use efficiency	68
4.6	Interaction between ETa according to Kc approaches	
	and irrigation system	69
4.6.1	The effect on seed yield and water use efficiency	69
V	SUMMARY AND CONCLUSIONS	71
VI	REFERENCES	75
VII	APPENDICES	88
-	ARABIC SUMMARY	-

IV - LIST OF TABLES

		Page
Table (1):	Survey of some expert systems for irrigation	
	water management	16
Table (2):	Some soil physical properties at the	
	experimental site	27
Table (3):	Some soil chemical characteristics at the	
	experimental site	28
Table (4):	Irrigation water chemical characteristics at	
	the experimental site	28
Table (5):	Reference values of Lengths, the single crop	
	coefficient (Kc), crop height (h), and root	
	depth (Z _r) for the four growth stages of	
	peanut and sesame (Doorenbos and Pruitt,	
	1977)	33
Table (6):	Reference values of Lengths, basal crop	
	coefficient (Kcb), crop height, and root depth	
	for the four growth stages of peanut and	
	sesame (Allen et al., 1998)	34
Table (7):	Average meteorological data at the	
	experimental site during the months of	
	validation (CLAC, 2012-2014)	34
Table (8):	Adjusted basal crop coefficients (Kcb adj)	
	according to local climate and soil water	
	stress conditions at the study area	49
Table (9):	Adjusted single- K_c ($K_{c\ adj}$) according to local	
	climate and soil water stress conditions at	
	the study area	49
Table (10):	Input data to the IMOC-ES rule-based	
	program	52

Table (11):	The effect of ET _a using single-K _c , dual-K _c	
	approaches, and control treatment (C) on	
	seed yield of peanut and sesame crops	63
Table (12):	The effect of irrigation system (SDI and	
	SSDI) on dry seed yield and water use	
	efficiency (WUE) for peanut and sesame	
	crops	68
Table (13):	The effect of interaction between ETa	
	according to K _c approaches and irrigation	
	system (SDI and SSDI) on seed yield and	
	water use efficiency (WUE) for peanut and	
	sesame crops	70
Table (14):	The equations used for the ETo according to	
	Penman-Monteith equation for daily	
	calculation time steps (Allen et al., 1998)	88
Table (15):	The equations used for the ET _{act} calculation	
	according to dual-Kc approach (Allen et al.,	
	1998)	89
Table (16):	The equations used for the ET _{act} calculation	
	according to single-K _c approach (Allen et	
	al., 1998)	92
Table (17):	The equations used for the estimating	
	irrigation requirements (IR)	94
Table (18):	Average daily climatic data at the	
	experimental site during months of	
	evaluation (CLAC, 2012-2015)	95

III - LIST OF FIGURES

		Page
Fig. (1):	Components of an expert system	5
Fig. (2):	The IMOC-ES program flowchart	18
Fig. (3):	Functions and rules in IMOC-ES program	19
Fig. (4):	Layout of the experiment	31
Fig. (5):	The automatic control system	32
Fig. (6):	The experimental design	42
Fig. (7):	Calculation of daily using the IMOC-ES program	
	and the personally designed spreadsheet	44
Fig. (8):	Calculation of using the IMOC-ES, CropWat-8.0,	
	and ET _o Calculator-3.2 programs during the	
	months of validation	44
Fig. (9):	Calculation of adjusted dual-K _c using the IMOC-ES	
	program and FAO-56 spreadsheet for (a) peanut	
	and (b) sesame	46
Fig. (10):	Calculation of adjusted single-Kc using the IMOC-	
	ES program and FAO-56 spreadsheet for (a)	
	peanut and (b) sesame	47
Fig. (11):	K _e , K _{cb} , and dual-K _c curves following irrigation	
	during the four growth stages of (a) peanut and (b)	
	sesame crops in 2014	48
Fig. (12):	Dual-K _c , and single-K _c curves following irrigation	
	during the four growth stages for (a) peanut (b)	
	sesame crops in 2014	51
Fig. (13):	Calculation of ET _a using the IMOC-ES program	
	and FAO-56 spreadsheet for (a) peanut and (b)	
	sesame according to dual-K _c approach	58
Fig. (14):	Calculation of ET _a using the IMOC-ES program	
	and FAO-56 spreadsheet for (a) peanut and (b)	

	sesame according to single-K _c approach	59
Fig. (15):	Cumulative ET _a estimated by single-K _c and dual-	
	K _c approaches for (a) peanut and (b) sesame	
	under SDI	60
Fig. (16):	Cumulative ET _a estimated by single-K _c and dual-	
	K _c approaches for (a) peanut and (b) sesame	
	under SSDI	62
Fig. (17):	Calculation of irrigation depth (I) using the IMOC-	
	ES program and FAO-56 spreadsheet for (a)	
	peanut and (b) sesame according to dual-K _c	
	approach under SDI	64
Fig. (18):	Calculation of irrigation depth (I) using the IMOC-	
	ES program and FAO-56 spreadsheet for (a)	
	peanut and (b) sesame according to dual-K _c	
	approach under SSDI	65
Fig. (19):	Calculation of irrigation depth (I) using the IMOC-	
	ES program and FAO-56 spreadsheet for (a)	
	peanut and (b) sesame according to single-K _c	
	approach under SDI	66
Fig. (20):	Calculation of irrigation depth (I) using the IMOC-	
	ES program and FAO-56 spreadsheet for (a)	
	peanut and (b) sesame according to single-Kc	
	approach under SSDI	67

VIII

III - LIST OF PLATES

		Page
Plate (1):	Opening screen of the IMOC-ES program	21
Plate (2):	Inputs form of IMOC-ES program	22
Plate (3):	Climatic data screen of the IMOC-ES program	22
Plate (4):	Crop data screen of the IMOC-ES program	23
Plate (5):	Soil data screen of the IMOC-ES program	23
Plate (6):	Irrigation options screen of the IMOC-ES program.	24
Plate (7):	Output screen of the IMOC-ES program	24
Plate (8):	Output screen according to single-K _c approach	25
Plate (9):	Output screen according to dual-K _c approach	25
Plate (10):	The output screen of the IMOC-ES program for	
,	irrigation scheduling for peanut according to dual-	
	K₅ approach under SDI	56