FERTIGATION MANAGEMENT OF CUCUMBER PLANTS UNDER PLASTIC HOUSES

BY MOHAMED ABDRABBO AHMED ABDRABBO

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 1993 M. Sc. Agric. Sc. (Vegetable Crops), Ain Shams University, 2001

A thesis submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

In Agricultural Science (Vegetable Crops)

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval Sheet

FERTIGATION MANAGEMENT OF CUCUMBER PLANTS UNDER PLASTIC HOUSES

BY MOHAMED ABDRABBO AHMED ABDRABBO

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 1993 M. Sc. Agric. Sc. (Vegetable Crops), Ain Shams University, 2001

This thesis for Ph. D. degree has been approved by:

Prof. E	Ahmed Shananmeritus of Vegetable Crops, Faculty of Agriculture, Al-
Prof. E	Ibrahim El-Oksh
·	Farid Abou Hadid of Vegetable Crops, Faculty of Agriculture, Ain Shams resity

Date examination: / /2005

FERTIGATION MANAGEMENT OF CUCUMBER PLANTS UNDER PLASTIC HOUSES

BY

MOHAMED ABDRABBO AHMED ABDRABBO

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 1993 M. Sc. Agric. Sc. (Vegetable Crops), Ain Shams University, 2001

Under the supervision of

Dr. Ayman Farid Abou Hadid.

Professor of Vegetable Crops, Hort. Dept., Fac. of Agric., Ain Shams University (principal supervisor)

Dr. Essam Mohamed Abd El Moniem.

Associated professor of Soil Science, Soil Dept., Fac. of Agric., Ain Shams University

Dr. Mahmoud Abdalla Medany.

Senior researcher, Central Laboratory for Agricultural Climate, Agriculture Research Center

ABSTRACT

Mohamed Abdrabbo Ahmed Abdrabbo. Fertigation Management of Cucumber Plants under Plastic Houses. Unpublished Doctor of Philosophy Thesis. (Vegetable crops). Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2005.

Cucumber (*Cucumis sativus* L. cv. Delta Star F1) plants were grown in white plastic containers filled with sand at different levels of nitrogen, phosphorus and potassium under a typical plastic-covered greenhouse. The experiment was carried out in the Protected Cultivation Experimental Site at Dokki, Giza during the two successive seasons of 2002/2003 and 2003/2004. The main objective of this study was to determine cucumber response and nutrient uptake under different treatments. Twenty seven combinations of nitrogen [90 (N1), 180 (N2) and 270 (N3) mg/l]; phosphorus [15 (P1), 35 (P2) and 70 (P3) mg/l] and potassium [120 (K1), 240 (K2) and 360 (K3) mg/l] were applied in a randomized complete block design with three replicates. Plant leaf samples (4th mature leaf from top) were removed in order to analyze nutrient concentration in cucumber leaves. Harvesting started after four weeks from transplanting and the total yield was accumulated every two weeks in order to find out the relationship between yield from one hand and N, P and K status from the other hand. The results showed that plant height, leaves area, stem diameter and chlorophyll content were increased with increasing nitrogen concentration in the nutrient solution accompanied with (P2K2), (P2K3), (P3K2) or (P3K3). The lowest early and total yields were obtained in N1 accompanied with different combinations of P and K. Meanwhile, N2 gave the highest early yield under different combinations with P and K but without significant differences with N3 treatments up till the 2nd week after beginning of harvest; N3 gave significantly the highest total yield followed by N2 accompanied with (P2K2), (P2K3), (P3K2) and (P3K3) in comparison with both N2 and N3 treatments with P1, K1 or both of them. Plant analysis revealed that low concentrations of N, P or K in the 4th leaf were proportional to low vegetative growth parameters and total yields.

Keywords:

Cucumis sativus; nitrogen, potassium; phosphorus nutrient dose; nutrient interaction; plant analysis; soilless culture.

ACKNOWLEDGEMENT

My heartfull thanks and gratefulness are extended to **Prof. Dr.Ayman Farid Abou-Hadid.**, Professor of Vegetable Crops, Faculty of Agriculture, Ain Shams University for his supervision, kind help, follow up and valuable constructive ideas.

Great thanks are expressed to **Dr. Essam Mohamed Abd El Moneim** Associated Professor of Soil Department, Faculty of Agriculture, and Ain Shams University for his constructive supervision and valuable helping throughout this study.

Deepest and sincere gratitude and appreciation to **Dr. Mohamoud Abdalla Medany,** Senior Researcher, Central Laboratory for Agricultural Climate, for his kind help, constructive supervision and encouragement.

My deep thanks are also extended to the Central Laboratory for Agriculture Climate (CLAC), Agriculture Research Center beside the staff of the Agriculture Laboratory for Arid Land Research Unit (ALARU) for the facilities granted during this work.

My heartfull thanks and sincere appreciation to **my parents** for their helpful support and encouragement allover my life.

CONTENTS

		Page
1	Introduction	1
2	Review of literature	3
2.1	Vegetative growth	3
2.2	Yield	9
2.3	Nutrient contents in plant	12
3	Material and methods	20
3.1	Plant material	20
3.2	Treatments	21
3.3	Plant growth parameters	21
3.3.1	Plant height	21
3.3.2	Total leaf area	28
3.3.3	Number of leaves	28
3.3.4	Stem diameter	28
3.3.5	Total chlorophyll	28
3.3.6	Fresh weight	28
3.3.7	Dry weight	28
3.4	Yield	29
3.5	Experimental design	29
3.6	Statistical analysis	29
3.7	Chemical analysis	29
3.7.1	Plant sample and chemical analysis	29
3.7.2	Chemical analysis of soil	30
4	Results	31
4.1	Vegetative growth	31
4.1.1	Plant height	31
4.1.2	Total leaf area	33
4.1.3	Number of leaves	35
4.1.4	Stem diameter	37
4.1.5	Chlorophyll	37
4.1.6	Fresh weigh of plant	40
417	Dry weight of plant	42

4.2	Yield	42
4.3	Chemical contents	46
4.3.1	Chemical contents of cucumber leaf	46
4.3.1.1	Nitrogen	46
4.3.1.2	Phosphorus	49
4.3.1.3	Potassium	52
4.3.1.4	Calcium	55
4.3.1.5	Magnesium	55
4.3.2	Cumulated nutrient content (g) of cucumber plant	60
	roots, shoots, leaves and fruits	
4.3.2.1	Nitrogen	60
4.3.2.2	Phosphorus	63
4.3.2.2	Potassium	63
4.3.3	Chemical contents of cucumber fruits	68
4.3.3.1	Nitrogen content	68
4.3.3.2	Nitrate content	68
4.3.3.3	Phosphorus content	71
4.3.3.4	Potassium content	71
4.3.3.5	Calcium and magnesium contents	71
4.4	Interaction between cumulated yield and nitrogen,	72
	phosphorus and potassium content in cucumber	
	leaves	
4.5	Relationships between nutrient contents in the	74
	cucumber leaves and concentration in nutrient	
	solution:	
5	Discussion	79
6	Summary and conclusion	89
7	References	93

LIST OF FIGURES

		Pag
Figure (1)	Fixed climatic sensors in the middle of the	
	greenhouse	27
Figure (2)	Tensiometer inserted in one of the treatments	27
Figure (3)	Relationships between average nitrogen content	
	(%) in the fourth leaf of cucumber plants,	
	receiving different nitrogen phosphorus and	
	potassium treatments, every two weeks from	
	harvest, and average plant yield (g/plant) every	
	two weeks during the two studied	
	seasons	75
Eiguro (4)		13
Figure (4)	Relationships between average phosphorus content	
	(%) in the fourth leaf of cucumber plants,	
	receiving different nitrogen phosphorus and	
	potassium treatments, every two weeks from	
	harvest, and average plant yield (g/plant) every	
	\mathcal{E}	75
Figure (5)	Relationships between average potassium content	
	(%) in the fourth leaf of cucumber plants,	
	receiving different nitrogen phosphorus and	
	potassium treatments, every two weeks from	
	harvest beginning, and average plant yield	
	(g/plant) every two weeks during the two studied	
	seasons	76
Figure (6)		
1 18410 (0)	in the fourth leaf of cucumber plants, and average	
	nitrogen concentration in nutrient solution (mg/l)	
	_	77
Figure (7)	during the two studied seasons	77
rigule (7)	Relationship between average phosphorus content	
	(%) in the fourth leaf of cucumber plants, and	
	average phosphorus concentration in nutrient	70
T	solution (mg/l) during the two studied seasons	78
Figure (8)	Relationship between average potassium content	

(%) in the fourth leaf of cucumbe	plants, and
average potassium concentration	in nutrient
solution (mg/l) during the	vo studied
seasons	78

LIST OF TABLES

		Pag
Table (1)	Physical and chemical properties of experimental	
F 11 (2)	soil and water analysis	22
Table (2)	Climatic recorded data in the greenhouse during the two studied seasons	23
Table (3)	Irrigation requirements (liter / plant per day) for	
	cucumber plants under greenhouse in both seasons. Nutrient amounts for different fertilizer treatment	24
Table (4)		25
FD 11 (5)	under plastichouses during the two seasons	25
Table (5)	Nitrogen, phosphorus and potassium concentrations	
	(ppm) applied as fertigation rates for two	
	seasons	26
Table (6)	Effect of different applied nitrogen, phosphorus and	
	potassium rates on plant height (cm) of cucumber	
	plant grown under plastichouse conditions during	
	the two studied seasons	32
Table (7)	Effect of different applied nitrogen, phosphorus and	
· /	potassium rates on total leaf area per plant (cm ²) of	
	cucumber plant grown under plastichouses	
	conditions during the two studied	
	seasons	34
Table (8)	Effect of different applied nitrogen, phosphorus and	54
1 abic (6)	potassium rates on number of leaves per plant of	
	cucumber plant grown under plastichouses	26
T.1.1. (0)	conditions during the two studied seasons	36
Table (9)	Effect of different applied nitrogen, phosphorus and	
	potassium rates on stem diameter (mm) of	
	cucumber plant grown under plastichouses	
	conditions during the two studied seasons	38
Γable (10)	Effect of different applied nitrogen, phosphorus and	
	potassium combination levels on chlorophyll	
	content (SPAD) of cucumber plant grown under	
	plastichouses conditions during the two studied	

Table (11)	seasons Effect of different applied nitrogen, phosphorus and	39
1 10010 (11)	potassium rates on total plant fresh weight (g/plant)	
	of cucumber plant grown under plastichouses conditions in the two studied seasons	41
Table (12)	Effect of different applied nitrogen, phosphorus and	
	potassium rates on total plant dry weight (g/plant) of	
	cucumber plant grown under plastichouses conditions in the two studied seasons	43
Table (13)		
	potassium rates on early fruit yield (g/plant) of	
	cucumber plant grown under plastichouse conditions in the two studied seasons	44
Table (14)	Effect of different applied nitrogen, phosphorus and	
	potassium combination levels on total fruit yield (g/plant) of cucumber plant grown under	
	plastichouse conditions in the two studied seasons	45
Table (15)		
	potassium rates on total nitrogen content (%) in fourth leaf of cucumber plant grown under	
T 11 (16)	plastichouses conditions in the first season	47
Table (16)	Effect of different applied nitrogen, phosphorus and potassium rates on total nitrogen content (%) in	
	fourth leaf of cucumber plant grown under	
Table (17)	plastichouses conditions in the second season Effect of different applied nitrogen, phosphorus and	48
1 autc (17)	potassium rates on total phosphorus content (%) in	
	fourth leaf of cucumber plant grown under	7 0
Table (18)	plastichouses conditions in the first season Effect of different applied nitrogen, phosphorus and	50
` '	potassium on total phosphorus content (%) in fourth	
	leaf of cucumber plant grown under plastichouses conditions in the second season	51
Table (19)		<i>J</i> 1

	potassium combination levels on total potassium	
	content (%) in fourth leaf of cucumber plant grown	
	under plastichouses conditions in the first season	53
Table (20)		33
Table (20)	Effect of different applied nitrogen, phosphorus and	
	potassium rates on total potassium content (%) in	
	the fourth leaf of cucumber plant grown under	54
Table (21)	plastichouses conditions in the second season	34
Table (21)		
	potassium rates on total calcium content (%) in	
	fourth leaf of cucumber plant grown under	5.0
Table (22)	plastichouses conditions in the first season	56
Table (22)		
	potassium rates on total calcium content (%) in	
	fourth leaf of cucumber plant grown under	57
Table (22)	plastichouses conditions in the second season	57
Table (23)		
	potassium rates on total magnesium content (%) in	
	fourth leaf of cucumber plant grown under	50
Table (24)	plastichouses conditions in the first season	58
Table (24)		
	potassium rates on total magnesium content (%) in	
	fourth leaf of cucumber plant grown under	50
Table (25)	plastichouses conditions in the second season	59
Table (25)		
	rates on cumulated nitrogen (g/plant) in root, shoot	
	and roots of cucumber plant grown under	<i>6</i> 1
Table (26)	plastichouses conditions in the first season	61
Table (26)		
	potassium rates on cumulated nitrogen (g/plant) in	
	root, shoot and roots of cucumber plant grown	
	under plastichouses conditions in the second season	62
Table (27)	Effect of different applied nitrogen, phosphorus and	02
1a010(41)	Effect of different applied indugen, phosphorus and	

	potassium rates on cumulated phosphorus (g/plant) in root, shoot and roots of cucumber plant grown under plastichouses conditions in the first	
Table (28)	season Effect of different applied nitrogen, phosphorus and potassium combination levels on cumulated	64
	phosphorus (g/plant) in roots, shoots, leaves and fruit of cucumber plant grown under plastichouses	
	conditions in the second season	65
Table (29)	Effect of different applied nitrogen, phosphorus and	
	potassium rates on cumulated potassium (g/plant) in	
	roots, shoots, leaves and fruit of cucumber plant grown under plastichouses conditions in the first	
	season	66
Table (30)	Effect of different applied nitrogen, phosphorus and	
, ,	potassium rates on cumulated potassium (g/plant) in	
	roots, shoots, leaves and fruit of cucumber plant	
	grown under plastichouses conditions in the second	
T 11 (21)	season	67
Table (31)	Effect of different applied nitrogen, phosphorus and	
	potassium rates on total N, NO ₃ , P, Ca and Mg content of cucumber fruit grown under	
	plastichouses conditions in the first season	69
Table (32)	Effect of different applied nitrogen, phosphorus and	0)
()	potassium rates on total N, NO ₃ , P, Ca and Mg	
	content of cucumber fruit grown under	
	plastichouses conditions in the second season	70

1- INTRODUCTION

Addition of required nutrients with the irrigation water (fertigation) not only insured adequate and even distribution of plant nutrients within the active root growth zone, but also was the easiest way to manage in controlled environment greenhouse. Type and rates of fertilizers to be used for vegetable crops grown under greenhouse conditions is still a controversy (Schwarz and Klaring, 2002).

Cucumber is one of the major vegetable crops grown in Egypt under plastic house conditions. The total number of plastic houses in Egypt was estimated to be 22 thousands units of 540 m² each, according to 2003 statistics; 13, thousands of them were devoted to cucumber in the autumn season, representing about 60% (**Egyptian Ministry of Agriculture**, **2004**).

Inappropriate nutrient formulations and management may lead to nutrient imbalances, physiological disorders, and low growth rates in soilless culture. Many nutrient formula have been recommended for cucumber to improve yield and product quality, but no information is available on the optimal composition and concentration of nutrients for cucumber plants under plastic culture based on plant analysis (**Resh**, 1997).

Through decades of research, sufficiency guidelines have been developed for most important vegetable crops. Evaluations of this standard with drip irrigation and fertigation still have not been conducted. With the increase in use of fertigation with drip irrigation vegetable production under greenhouse, there is a need to develop sufficiency range for leaf testing for fertigated plant (**Studstill** *et al.*, 2003). Tissue mineral analyses frequently are used as basis for determining crop fertilization requirements and often correlated with yield. Tissue mineral concentration is not always related directly to mineral uptake; factors such as ion antagonism and dilution due to greater growth and yield must be considered (**Fageria**, 2001).