

Information Systems Department Faculty of Computer and Information Sciences

Quality-of-Service Routing for Ad-Hoc Wireless Networks

THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer and Information sciences

To the department of Information Systems, Faculty of Computer and Information Sciences, Ain Shams University.

BY MOHAMED HAMDY MOHAMED EL-ELIEMY

B.Sc., Faculty of Computer and Information Sciences, Ain Shams University.

SUPERVISED BY Prof. Dr. SAID GHONIEMY

Vice Dean for Postgraduate Studies and Research Affairs, Faculty of Computer and Information Sciences, Ain Shams University.

Dr. MOHAMED HASHEM

Chairman of the Technical Research and Development Center, Air Defense Forces.

Cairo - 2004

Acknowledgments

Thanks are due to ALLAH for getting this work done. I am very grateful for the encouragement of Professor M. Said Abdel Wahab our faculty dean. Many thanks are given to my Advisors, Professor Said Ghoniemy, and Doctor Mohamed Hashem, for their continuous support, and help in all fields of my life and research work. Many work of thesis weren't be done without their valuable comments that helped me to cut many huge technical problems. I want to specially thank Doctor Mohamed Hashem for his constant support, interest, and encouragement of my work. I learned too much from him and I hope to continue the cooperation with him in following research. In this acknowledgment I should highlight the continuous encouragement and support of Professor M.A. Sharkawi. Also, I would like to thank Professor Ahmed Hamad for his helpful and valuable comments in my work. Many thanks are given to everyone who helped me to achieve this work.

Abstract

Recently, Mobile Ad-Hoc Networks (MANETs) have received much attention as an interesting category of wireless networks that have many potential applications in which Quality-of-Services (QoS) support is an essential aspect to be achieved such as battlefield communication, disaster recovery, ...etc. However, managing link state information such as delay, bandwidth, and cost is difficult because of the ever-changing topology characteristics of the ad-hoc networks, limited resources, and host's mobility.

QoS routing is a key issue in designing these networks. A lot of work has been done to support QoS in many types of wired-line and cellular networks. Unfortunately, none of these works can be applied directly in ad-hoc networks because of their natures. Because the QoS routing problem is a hard constrained distributed application with dynamically changing constraints, and it is classified as NP-complete problem and it lends itself to heuristic algorithms.

Since routing operations are very heavy tasks for routers using traditional routing operations, the need of applying evolutionary techniques such as genetic algorithms have become increasingly interesting for research. Many routing algorithms based on genetic algorithms are introduced.

In this thesis, an introduction to cellular and ad-hoc networks is presented, and their different structures are discussed. QoS routing as a main QoS component in ad-hoc networks is introduced, its weighted graph model is presented, and unicast and multicast routing problems are classified.

Because the multi-constrained routing process in ad-hoc network environments is very exhaustive for routers (mobile hosts). Finding routes under more than one constraint is an NP-complete problem. The complexity of routing process in ad-hoc network environment becomes extreme especially

when the scalability of the network is taken into consideration. Many heuristic techniques are studied to be used in the routing process.

Ticket Based Probing routing algorithm is classified as one of the best-known routing algorithms. This thesis proposes a modified TBP algorithm that inherits the original ticket based probing algorithm while reducing the message routing overhead. The proposed algorithm uses hot and cold termination strategies to achieve this reduction. Through simulation, the proposed modified algorithm is found to have the same success ratio of finding low cost routes but with better message overhead ratio.

The second main contribution of this thesis is that, two genetic algorithms for the ad-hoc QoS routing problems are proposed. These two algorithms are different in data representation. The first one is a simple genetic-based QoS unicast routing algorithm in which a node-based encoding is applied for the route representation. The second algorithm is a QoS-aware genetic routing algorithm, which introduces a new link-based encoding approach for the chromosome representation. The simulation results and performance analysis show that the application of genetic algorithms for the solution of QoS routing problem is promising. The proposed algorithms are found to have better QoS performance measures, namely; success ratio and cost. The second algorithm achieves acceptable success ration for various delay requirements.

The major achievements of this work could be highlighted as follows:

- 1- A modified heuristic algorithm for QoS distributed routing in mobile ad-hoc networks that reduces the problem of routing message overhead is proposed.
- 2- A solution for the unicast source routing problem using genetic algorithms is evaluated.
- 3- A QoS-Aware proposed genetic algorithm for unicast source routing with a new proposed chromosomal encoding is presented, with efficient performance.

Published Work

The work in this thesis is published in three papers as follows:

- 1- M. Hashem, M. Hamdy, S. Ghoniemy "Modified Distributed Quality-of-Service Routing in Ad Hoc Wireless Mobile Networks", 11th IEEE Melecon, Cairo, 7-8 May 2002.
- 2- M. Hashem, M. Hamdy, S. Ghoniemy "A Genetic Algorithm for Delay-Constrained Unicast Source Routing in Ad Hoc Wireless Mobile Networks", First International Conference on Intelligent Computing and Information Systems (ICICIS'2002), June 2002, Cairo, Egypt.
- 3- M. Hashem, M. Hamdy, S. Ghoniemy "A Quality-of-Service-Aware Genetic Algorithm for The Source Routing in Ad-hoc Mobile Networks" 7th IEEE International Conference On Intelligent Engineering Systems, INES 2003, March 4-6, Assiut-Luxor, Egypt and 1st Technical Conference of Air Defence College for Cirtical Technologies, Febreuary 2003, Alexandria, Egypt and accepted paper for publication and presentation in:
 - a- Twenty-First IASTED International Multi-Conference APPLIED INFORMATICS, AI2003, February 10-13, 2003 Innsbruck, Austria.
 - b- 5th International Conference on Enterprise Information Systems, Ecole Supérieure d' electronique de l' Ouest, 23-26, April 2003, Angers, France.

Contents

LIST OF FIGURES	xi
LIST OF TABLES	xiv
1 MOTIVATION, RESEARCH GOALS, AND OUTLINES	2
1.1 Motivation.	2
1.2 Research Goals	4
1.3 Thesis Outlines	5
2 QUALITY-OF-SERVICE IN MOBILE NETWORKS	8
2.1 Introduction	9
2.1.1 Characteristics of Mobile Ad-hoc Networks	11
2.1.2 Applications of Mobile Ad-hoc Networks	13
2.2 QoS Definitions	14
2.3 QoS Management	15
2.4 QoS Management Building blocks	16
2.4.1 End-to-End Mechanisms	16
2.4.2 Edge Mechanisms	18
2.4.3 Core Mechanisms	19
2.5 Impacts on QoS According to mobile environments	21
2.5.1 Effects of Mobility on OoS	21

	2.5.2 Effects According to Link Type and Quality	22
	2.5.3 Restrictions of Mobile Devices	23
	2.5.4 Effects of Non-functional Environmental Parameters	24
2.6	QoS Support in Mobile Ad-Hoc Networks	24
	2.6.1 QoS Model	26
	2.6.2 QoS Signaling	29
	2.6.3 QoS Routing	31
	2.6.4 QoS MAC protocols	32
	Wireless flow management model at a mobile host for MANETs	35
	2.7.1 Packet Forwarding module	36
	2.7.2 Routing Module	36
	2.7.3 Admission Control Module	37
	2.7.4 Packet Scheduling Module	37
	2.7.5 Medium Access Controller Module	37
2.8	Current Work of QoS and Related Topics	38
3 Q	OS ROUTING IN MOBILE AD-HOC NETWORKS	43
3.1	Basic Concepts	44
	3.1.1 Weighted Graph Model	44
	3.1.2 QoS Metrics and Constraints	45
	3.1.3 QoS Routing Provision Scheme	46
3.2	Routing Problems	46
	3.2.1 Unicast Routing Problem	46
	3.2.2 Multicast Routing Problems	48
	3.2.3 QoS Routing and Other Network Processes	48
	5.2.5 Qo5 Routing and Other Network Processes	70
3.2	3.1.2 QoS Metrics and Constraints	45 46 46 48

3.3.1 Communication Model	51
3.3.2 Structure	51
3.3.3 State Information	53
3.3.4 Scheduling	53
3.3.5 Overview on Routing Protocols	54
3.4 Routing Strategy	61
3.4.1 Strengths and Weaknesses of Source Routing	61
3.4.2 Strengths and Weaknesses of Distributed Routing	62
3.4.3 Strengths and Weaknesses of Hierarchical Routing	63
3.5 Routing Strategy Classification	64
3.5.1 Unicast Algorithms	64
3.5.2 Multicast Algorithms	68
	Uo
3 DISTRIBUTED QOS ROUTING IN MOBILE AD-HOC	72
NETWORKS4.1 The distributed QoS Routing Problem	73
4.1.1 System	13
Models	73
4.1.2 Ticket Based Probing QoS Distributed Routing	
4.1.3 Delay-Constrained Routing Algorithm	75
•	76
4.2 The proposed modified Delay-Constrained	
Routing Algorithm	80
Routing Algorithm	80 80
4.2.1 Message Overhead	80
4.2.1 Message Overhead	80 81
4.2.1 Message Overhead	80 81 84

4.3.3 Average Message Overhead	87
4.3.4 Average Path Cost	89
5 GENETIC QOS ROUTING ALGORITHMS	93
FOR MOBILE AD-HOC NETWORKS	
5.1 Genetic Algorithms Overview	- •
5.1.1 What are genetic Algorithms?	95
5.1.2 Basic Principles	98
5.2 System Model	103
5.3 Genetic Algorithm for Delay Constrained Unicast	102
Source Routing in Ad-Hoc Networks (GASRAN)	103
5.3.1 Chromosome Representation	105
5.3.2 Fitness Function	106
5.4 Simulation and Results	107
5.5 A QoS-Aware Routing Genetic Algorithm	111
5.5.1 Network Topology	111
5.5.2 Mobility Model	111
5.5.3 Communication Model	112
5.5.4 Chromosome Representation	112
5.5.5 Fitness Function	114
5.6 General structure of the proposed algorithm	115
5.7 Results & Discussions	116
5.7.1 Performance Analysis	117
6 CONCLUSIONS AND FUTURE WORK	130
	220
REFERENCES	1.40
	140

APPENDIX

A Quality-of-Service-Aware Genetic Algorithm for	
The Source Routing in Ad-hoc Mobile Networks	151
Simulation Source Code	
	xi
	xiv

List of Figures

2.1	Cellular network topology	9
2.2	Mobile ad-hoc network at a specific time instant	10
2.3	Link or connection formation between two nodes	10
2.4	Ever-changing topology of ad-hoc network	11
2.5	Shared and per-flow buffering architecture	20
2.6	IEEE 802.11 MAC modes for infrastructure/ad-hoc networks	33
2.7	Wireless flow management model at a mobile host	35
3.1	Network state	44
3.2	Unicast routing problems	47
3.3	Multicast routing problems	49
3.4	Protocol Taxonomy	55
3.5	Routing algorithm taxonomy	64
4.1	How a probe flows through nodes	76
4.2	Modified ticket distribution flowchart	83
4.3	Flowchart of modified termination strategies	84
4.4	Network Topology	86
4.5	Success ratio for imprecision rate 5%	86
4.6	Success ratio for imprecision rate 10%	87
4.7	Success ratio for imprecision rate 25%	87
4.8	Success ratio for imprecision rate 50%	87
4.9	Message overhead (imprecision rate 5%)	88
4.10	Message overhead (imprecision rate 10%)	88
4.11	Message overhead (imprecision rate 25%)	89
4.12	Message overhead (imprecision rate 50%)	89
4.13	Cost per established path (imprecision rate 5%)	00

List of Figures

4.14	Cost per established path (imprecision rate 10%)	90
4.15	Cost per established path (imprecision rate 25%)	90
4.16	Cost per established path (imprecision rate 50%)	91
5.1	General structure of the proposed GASRAN	104
5.2	Network of seven nodes	105
5.3	Execution time of GASRAN versus the average delay requirements	108
5.4	Execution time of GASRAN versus network node number	109
5.5	Execution time of GASRAN	110
5.6	A nine-node network	113
5.7	General structure of GA	116
5.8	Success ratio vs. Average delay requirement (at imprecision rate 5%)	118
5.9	Success ratio vs. Average delay requirement (at imprecision rate 10%).	118
5.10	Success ratio vs. Average delay requirement (at imprecision rate 25%).	119
5.11	Success ratio vs. Average delay requirement (at imprecision rate 50%)	119
5.12	Average cost vs. Average delay requirement	120
5.13	Average cost vs. Average delay requirement	120
5.14	Average cost vs. Average delay requirement	121
5.15	Average cost vs. Average delay requirement	121
5.16	Success ratio at max. speed: 1mps	122
5.17	Avg. cost at max. speed: 1mps	123
5.18	Success ratio at max. speed: 2mps	123
5.19	Avg. cost at max. speed: 2mps	124
5.20	Success ratio at max. speed: 3mps	124
5.21	Avg. cost at max. speed: 3 mps	125
5.22	Success ratio at max. speed: 4mps	125
5.23	Avg. cost at max. speed: 4mps	126
5.24	Success ratio at max. speed: 5mps	126
5.25	Avg. cost at max. speed:5 mps	127

List of Figures

Success ratio at max. speed: 6 mps	127
Avg. cost at max. speed: 6 mps	128
Success ratio at max. speed: 7mps	128
Avg. cost at max. speed: 7mps	129
Success ratio at max. speed: 8mps	129
Avg. cost at max. speed: 8mps	130
Success ratio vs. Mobility at imprecision rate 5%	130
Success ratio vs. Mobility at imprecision rate 10%	131
Success ratio vs. Mobility at imprecision rate 25%	131
Success ratio vs. Mobility at imprecision rate50%	132
Cost vs. Mobility	132
	Avg. cost at max. speed: 6 mps

List of Tables

2.1	Transmission media bandwidths	14
2.2	Main technology-based characteristics of QoS categories.	15
2.3	Main user-based characteristics of QoS categories	16
3.1	Unicast routing algorithms	66
3.2	Multicast routing algorithms	67
4.1	Data Structure of probe	80
4.2	New probe data structure	82
4.3	System parameters	85
5.1	A chromosome	106
5.2	A nine-node chromosome	113
5.3	A nine-node network links	114

Chapter 1

Motivation, Research goals, and Outlines

1.1 Motivation

Since 70's, studies of using different types of wireless networks in both military and civil applications have become increasingly popular in the network industry. Recently, Mobile Ad-hoc Networks have received more attention as an interesting category of wireless networks. Ad-hoc networks represent an interesting category of mobile computing. In some applications such as battlefield communications, disaster recovery etc., the wired network is not practical and multi-hop wireless networks provide the only feasible means for communication and information access.

According to the rising popularity of multimedia applications and potential commercial usage of mobile ad-hoc networks, Quality-of-Service support for mobile ad-hoc networks becomes an essential aspect to be achieved.