

Ain Shams University

Faculty of Engineering

Engineering Physics and Mathematics Department

Modeling of Passive Components on Silicon Substrates

A Thesis

Submitted in Partial Fulfillment for the Requirements of the degree of Master of Science in Engineering physics.

Submitted By

Mona Mohamed Amin Abdel Aziz El Sabbagh

B.Sc. of Electrical Engineering (Electronics and Communications Engineering) Ain Shams University - 2000

Supervised By

Prof. Dr. Omar Abdel Halim Omar Dr. Mohamed Amin Dessouky

Ain Shams University

Cairo - 2005

Examiners Committee

Name: Mona Mohamed Amin El Sabbagh

Thesis: Modeling of Passive Components on Silicon Substrates.

Degree: Master of Science in Engineering physics.

Prof. Salah El Din Amin El Nahawi Engineering Physics and Mathematics Department Faculty of Engineering- Cairo University

Prof. Hani Fikry Ragaai Electronics and Communication Engineering Department Faculty of Engineering- Ain Shams University

Prof. Omar Abdelhalim Omar Engineering Physics and Mathematics Department Faculty of Engineering- Ain Shams University

Date: / / 2005

C.V

Name of the researcher: Mona Mohamed Amin Abdel Aziz El Sabbagh

Date of Birth: 8th of July 1977

Place of Birth: Cairo

Degree: B.Sc. in Electrical Engineering

Department: Electronics and Communication Engineering

Faculty: Faculty of Engineering

University: Ain Shams University

Date of Degree: 2000

Statement

This thesis is submitted to Ain Shams University in partial fulfillment of the

degree of M.Sc. in Engineering Physics.

The work included in the thesis was carried out by the author in the

Department of Engineering Physics and Mathematics, Ain Shams

University.

No part of this thesis has been submitted for a degree or a qualification at

any other University or institute.

Name: Mona Mohamed Amin Abdel Aziz El-Sabbagh

Signature:

Date: / / 2005

Acknowledgement

I would like to thank my supervisors; Prof. Dr. Omar A. Omar and Dr. Mohamed Dessouky for their continuous support, extreme patience, valuable guidance and helpful discussion. Without their guidance this work would not have been completed in this form. Words fail to express my deep gratitude towards Dr. Omar who gave me a lot of his time, patience and advice and who was for me the teacher, advisor and supervisor.

I would like to express my deep feeling toward Dr. Hadia El Hennawy for her help, encouragements, and all the references provided by her.

I would like also to thank Dr. Hany Fikry for allowing me to use his laboratory and providing it with all the tools helping the researchers.

Finally deep are due thanks for my mother who teaches me how to make good use of my time and love science and research. She is the best teacher and support I have ever seen. She is the cause of all my success.

Many thanks for my husband and all my family for their support, encouragements and patience.

Abstract

For the design of integrated circuits in the radio frequency band, equally important to active elements are also passive ones. Besides capacitors and ohmic resistors, inductors were recently successfully integrated on chip. The existence of high quality inductors significantly determines the circuit performance.

Monolithic inductors are becoming of great importance for many RF circuit. They are used in low noise amplifiers for matching and as tuned band loads, in voltage controlled oscillators as part of their tank circuit and in power amplifiers. The integration of inductors on chip allows smaller chip size, lower power consumption, and low cost for integrated circuits.

The modeling of these inductors is very important for designers to allow them getting the best performance of their circuits. The present inductor performance is based on libraries, where the measured performance of prefabricated inductors is stored and can be used directly by the designers. Electromagnetic simulators are also used for inductor simulation, but are less frequently used due to their complexity and large simulation time. Some models have been introduced in the literature but most of them are based on fitting factors.

In this work, emphasis is on the study of different physical effects that dominate the performance of a planar inductor. These include the inductor shape; turn proximity effects, metal losses and electric and magnetic field losses in the substrate. The ultimate goal of this work is to build novel and efficient compact and scalable model for on-chip inductors on silicon that is based only on physical parameters to get the inductor performance. The model takes into account all loss mechanisms in metal, including skin effects, proximity effects and fringing effects. The model also includes the losses into the substrates due to electric and magnetic field penetration. The proposed model is compared with measurements and simulations for different processes and

geometrical parameters. Comparison shows that the model predicted exactly the maximum quality factor, the self resonance frequency, and the inductance variation near resonance. The model has no fitting parameters and the time of computation is only few seconds.

Based on the understanding of different physical effects that determine the inductor performance, and variation of this performance with frequency, an optimization algorithm is presented which allows the designer to get the needed inductance with best quality factor without having to investigate different interrelated physical parameters. The model and optimization algorithm are implemented in Matlab code.

Table of contents:

es	iv
S	vi
eviations	vii
ols	ix
	1
Inductance and parasitic effects	7
onolithic Inductor Realization	7
Types of planar inductors:	8
ductance	10
uality factor:	14
osses:	15
Metal losses:	16
Substrate losses:	17
arasitics:	18
Feed through capacitance:	18
Lateral capacitance from turn to turn	19
ductor Parameters effects on its performance	20
The metallization conductivity:	23
Layout parameters:	24
Magnetic effects	29
agnetic effects in metals	29
Skin effects	30
Proximity effects (current crowding)	33
agnetic effects in substrate	37
Magnetic coupling with substrate	37
	Inductance and parasitic effects onolithic Inductor Realization. Types of planar inductors: ductance Self inductance: Mutual inductance: uality factor: Desces: Metal losses: Substrate losses: Substrate losses: Lateral capacitance from turn to turn ductor Parameters effects on its performance. Process parameters: The metallization conductivity: The metallization thickness: Layout parameters: Magnetic effects in metals Skin effects Proximity effects (current crowding) agnetic effects in substrate Magnetic effects in substrate Magnetic coupling with substrate

2.2.2	Analysis of magnetic coupling with heavily doped substrate	41
Chapter 3	Modeling	45
3.1 S	egmented models	46
3.1.1	Long and Copeland model:	
3.1.2	Papananous model:	
3.1.3	Niknijad model:	51
3.2 Co	mpact models:	52
3.2.1	Greenhouse method for inductance calculation:	53
3.2.2	Current sheet approach for inductance calculation:	56
3.2.3	Physically based inductance:	58
Chapter 4	Proposed model	63
4.1 In	nductance calculation	64
4.2 N	Ietal resistance calculation	64
4.2.1	Resistance due to the skin effect	64
4.2.2	Resistance due to proximity effects:	65
4.2.3	Combined skin and proximity effects:	70
4.2.4	Effective width variation:	70
4.3 C	oxide parasitics:	72
4.4 F	eed through capacitance	73
4.5 S	ubstrate effects:	73
4.5.1	Microstrip properties on silicon substrate	73
4.5.2	Magnetic field resistance:	82
4.6 R	esults	86
4.6.1	Metal resistance	
4.6.2	Combined substrate and metal effects.	88
4.7 A	utomation	99
	Design rules:	
4.7.2	Proposed algorithm:	103
Chapter 5	Conclusion and future work	107
5.1 C	ontributions	107
	onclusions	
	uture work	
J.J 1	HILL VIVI Reseases seems and seems a	**** I U/O

Appendix A	Mutual inductance of parallel sheets	111
Appendix B	Complete model calculation	115
Appendix C	HFSS simulator	119
С.1 Н	FSS definition	119
С.2 Н	FSS validation	120
Appendix D	Matlab codes	123
D.1 Pr	roposed model code:	123
D.2 M	latlab code for optimization:	127
References	•••••	135

List of Figures

Figure 1-1: Inductor layout.	8
Figure 1-2: Inductor cross section	
Figure 1-3: Rectangular spiral	9
Figure 1-4: Circular spiral	9
Figure 1-5: Hexagonal spiral	9
Figure 1-6: Self inductance as a function of cross section dimensions.	
Figure 1-7: Mutual inductance between inductor turns	
Figure 1-8: Mutual inductance as a function of line spacing (s)	
Figure 1-9: Coupling coefficient as function of spacing (s)	13
Figure 1-10: Mutual inductance as function of pitch (P)	
Figure 1-11: Magnetic coupling as function of pitch (P)	14
Figure 1-12: Source of losses for monolithic inductors	
Figure 1-13: Feed through capacitance	19
Figure 1-14: The interwinding capacitance.	19
Figure 1-15: Effect of oxide thickness on quality factor	20
Figure 1-16: Substrate resistivity effects on inductor performance	22
Figure 1-17: Effect of substrate resistivity on inductor quality factor	22
Figure 1-18: Effect of metal conductivity on the quality factor	23
Figure 1-19: Effect of metal thickness on quality factor	24
Figure 1-20: Quality factor as function in strip width	25
Figure 1-21: Q as a function of line spacing, L=5nH	26
Figure 1-22: Effect of inductor area	26
Figure 1-23: Optimum number of turns	27
Figure 2-1: Current density variation under different conditions	
Figure 2-2: Current distribution with conductor depth	. 31
Figure 2-3: Effective thickness as function of frequency for Aluminum	n.32
Figure 2-4: Effective thickness variation with frequency for copper	. 33
Figure 2-5: Eddy current in metal traces	. 33
Figure 2-6: Variation of magnetic field in the inductor with distance	
from the center	. 34
Figure 2-7: The distribution of magnetic field and eddy current	
within the metal strip	
Figure 2-8: Magnetic coupling with substrate	. 37
Figure 2-9: Transformer action between substrate and inductor	
Figure 2-10: Current sheet and current block approximations	
Figure 2-11: Measured results for the inductors of table 2.1	. 43

Figure 3-1: Segmented model for a single inductor turn	46
Figure 3-2: Inductor layout parameters.	48
Figure 3-3: Model of one inductor segment.	48
Figure 3-4: Experimental results of: a) 3-turn square spiral inductor,	
b) 8.5 turn octagonal spiral inductor	50
Figure 3-5: Niknijad Segmented model	
Figure 3-6: Compact model	
Figure 3-7: Interacting line filaments	54
Figure 3-8: Parameters of interacting segments.	
Figure 3-9: rectangular current sheet	
Figure 3-10: Trapezoidal current sheet	
Figure 3-11: Current sheet approach for spiral	
Figure 3-12: Inductor decomposition	
Figure 3-13: Mutual inductance between segments	
Figure 4-1: proposed compact model	
Figure 4-2: Current density decrease with distance	65
Figure 4-3: Micro-strip parameters.	
Figure 4-4: Magnetic field in nearby conductors.	
Figure 4-5: Current distribution due to eddy currents	
Figure 4-6: Fringing electric field. (a) Small conductor thickness.	
(b) Large conductor thickness	71
Figure 4-7: General microstrip structure.	73
Figure 4-8: Microstrip structure on passivated structure	
Figure 4-9: Chart of mode propagation in silicon substrate	
Figure 4-10: Model of passivated substrate	
Figure 4-11: Equivalent circuit (a) Usual equivalent circuit.	
(b) combined equivalent circuit	78
Figure 4-12: C_p of a bulk MOS	
Figure 4-13: R_p of a bulk MOS	79
Figure 4-14: Magnetic and electric field penetration for	
coplanar microstrip lines	80
Figure 4-15: Electric field distribution in silicon under	
monolithic inductor [EM using HFSS]	81
Figure 4-16: Magnetic coupling with substrate	
Figure 4-17: Current sheet parallel inductors separated by a distance d.	s.84
Figure 4-18: Eddy current pattern under the inductor	
Figure 4-19: Eddy current distribution.	
Figure 4-20: Metal losses model without substrate effects	
Figure 4-21: Comparison of model with simulation for thin metal	
Figure 4-22: Comparison of model with simulation for thick metal	
Figure 4-23: Comparison of model with measurements for inductor 1.	

Figure 4-24: Comparison of model with measurements for inductor 2 91
Figure 4-25: Comparison of model with measurements for inductor3 92
Figure 4-26: Comparison of model with measurements for inductor 4 93
Figure 4-27: Comparison of model with measurements for inductor 5. 94
Figure 4-28: Comparison of model with measurements for inductor 6 95
Figure 4-29: Comparison of model with measurements for inductor7 96
Figure 4-30: Comparison of model with EM simulation for inductor 897
Figure 4-31: Comparison of model with EM simulation for inductor9 98
Figure 4-32: Comparison of model with EM simulation for inductor10. 99
Figure 4-33: Increase of AC resistance due to small spacing [6] 101
Figure 4-34: Current distribution due to proximity effects
for narrow spacing(s=1µm), (a) at 1GHz, (b) at 5GHz 102
Figure 4-35: Current distribution due to proximity effects
for large spacing($s=1\mu m$), (a) at 1GHz, (b) at 5GHz 102
Figure A-1: Parallel current sheets
Figure B-1: Proposed model
Figure C-1: Comparison between simulator and measurements 121
Figure C-2: Comparison between simulator and measurements for 121
Figure C-3: Comparison between simulator and measurements for 122

List of Tables:

Table 2-1: Summary of spiral inductors	.42
Table 4-1: inductors parameters.	89
Table 4-2: Comparison between model and measurements for ind1	90
Table 4-3: Comparison between model and measurements for ind2	91
Table 4-4: Comparison between model and measurements for ind 3	92
Table 4-5: Comparison between model and measurements for ind 4	93
Table 4-6: Comparison between model and measurements for ind 5	94
Table 4-7: Comparison between model and measurements for ind 6	95
Table 4-8: Comparison between model and measurements for ind7	96
Table 4-9: Comparison between model and simulation for ind 8	97
Table 4-10: Comparison between model and simulation for ind9	98
Table 4-11: Comparison between model and simulation for ind 10	99
Table C-1: Inductors used for comparison.	.120

List of Abbreviations:

CMOS Complementary Metal oxide semiconductor.

BiCMOS Bipolar- CMOS.
GaAs Gallium arsenide
IC Integrated circuit.
IF Intermediate frequency

LNA Low noise amplifier
PA Power amplifier
PCB Printed circuit board.
RF Radio frequency.

RFICs Radio frequency integrated circuits.

SRF Self resonance frequency.

SGP Solid ground plane.

TEM Transverse electric and magnetic mode of propagation

VCO Voltage controlled oscillator.