Detection of Norwalk-Like Virus

in Cases of Acute
Gastroenteritis

Thesis

Submitted in Partial Fulfillment for Master Degree in Clinical Pathology

By

Nada El-Sayed Ahmed Sayed M.B., B.Ch. - Ain Shams University

Under Supervision of

Professor/ Nevine Nabil Kassem

Professor of Clinical and Chemical Pathology

Faculty of Medicine - Ain Shams University

Professor/ Omnia Abu El-Makarem Shaker

Professor of Clinical and Chemical Pathology

Faculty of Medicine - Ain Shams University

Professor/ Fatma El-Sayed Metwally

Professor of Clinical and Chemical Pathology

Faculty of Medicine - Ain Shams University

Faculty of Medicine

الكشف عن الفيروس المشابه للنورووك في حالات النزلات المعوية الحادة

رسالة توطئة للحصول على درجة الماجستير في الباثولوجيا الإكلينيكية والكيميائية

مقدمة من الطبيبة / ندا السيد أحمد سيد بكالوريوس الطب والجراحة - جامعة عين شمس

تحت إشراف الأستاذ الدكتور / نيفين نبيل قاسم الأستاذ الباثولوجيا الإكلينيكية والكيميائية كلية الطب – جامعة عين شمس

الأستاذ الدكتور/ أمنية أبو المكارم شاكر أستاذ الباثولوجيا الإكلينيكية والكيميائية كلية الطب – جامعة عين شمس

الأستاذ الدكتور/ فاطمة السيد متولى أستاذ الباثولوجيا الإكلينيكية والكيميائية كلية الطب – جامعة عين شمس

> كلية الطب جامعة عين شمس 2007

List of Abbreviations

Bp : Base pair

CDC : Centers for Disease Control and Prevention

CPE : Cytopathic effect

Cscl : Cesium chloride

cDNA : Complementary deoxy ribonucleic acid

dNTP : Deoxynucleoside triphosphates

DTT : Dithiothreitol

E.coli : Escherichia coli

EIA : Enzyme immunoassays

ELISA : Enzyme linked immunosorbent assay

EM : Electron microscopy

EPEC : Enteropathogenic E.coli

GI, GII : Genogroup I, genogroup II

IEM : Immune electron microscopy

Ig : Immunoglobulin

Kb : Kilo base

KDa : Kilo dalton

NLVs : Norwalk like viruses

OD : Optical density

ORF : Open reading frame

P : Probe

P/N : Positive / negative

PBS : Phosphate buffer saline

PPM: Part per million

Pt : Precipitate

RIA : Radioimmunoassays

RNA : Ribonucleic acid

rNV : Recombinant Norwalk virus

RT-PCR: Reverse transcriptase - polymerase chain reaction

SLVs : Sapporo-like viruses

SPIEM: Solid phase immune electron microscopy

SRSV : Small round-structured viruses

S.S : Salmonella shigella

TP : Taq probe

UK : United Kingdom

US : United States

VPg : Genome linked viral protein

XLD : Xylose lysine deoxy cholate

Contents

F List of tables	I
Elist of figures	II
List of Abbreviations	III
Tntroduction & Aim of the Work	1
Review of literature	
• Chapter 1: Norwalk like viruses	5
- Historical aspect	6
- Morphology	7
- Classification	8
- Immune response	9
- Physical properties	10
- Epidemiology	10
• Chapter 2: Viral gastroenteritis	14
- Rotaviruses	15
- Enteric adenoviruses	18
- Astroviruses	19
- Enteric coronaviruses	21
- Caliciviruses	23
 Chanter 3: Laboratory diagnosis 	28

	- Specimen collection and transport	28
	- Direct methods	30
	- Indirect methods	40
	• Chapter 4: Treatment and prevention	42
F	Subjects and Methods	46
P	Results	60
F	Discussion	71
F	Summary	76
F	Conclusion & Recommendations	79
F	References	80
F	Arabic summary	

List of Tables

Table No.	Table Title	Page No.
1	Reaction components for one step RT-PCR	57
2	Age and sex distribution for patient and control groups	60
3	Results of culture of stool samples of children with acute diarrhea	62
4	Detection of NLV-RNA by RT-PCR	63
5	Age distribution of NLV infection in the studied groups	64
6	Sex distribution of NLV infection in the studied groups	65
7	Correlation between the PCR results and onset of diarrhea	66
8	Correlation between the PCR results and duration of diarrhea	67
9	Correlation between the PCR results and frequency of diarrhea	68
10	Correlation between the PCR results and other clinical symptoms	69
11	Correlation between PCR and type of organism in stool	70
12	Association between the results of PCR and results of serotyping	70

List of Figures

Figure No.	Figure title	Page No.
1	Electron micrography of Norwalk-like virus	8
2	Electron micrography of rotavirus	16
3	Electron micrography of adenovirus	18
4	Electron micrography of astrovirus	20
5	Electron micrography of coronavirus	22
6	Electron micrography of calicivirus	24
7	Morphological diagram of Norwalk-like virus	33
8	Agarose gel electrophoresis of the amplified products	59
9	Frequency of different isolated organisms among patient group	62
10	Frequency of PCR positivity among patient group	63
11	Comparison between -ve and +ve PCR patients as regard age	64
12	Comparison between -ve and +ve PCR patients as regard sex distribution	65
13	Comparison between -ve and +ve PCR patients as regard onset of diarrhea	66
14	Comparison between -ve and +ve PCR patients as regard duration of diarrhea	67
15	Comparison between -ve and +ve PCR patients as regard frequency of diarrhea	68
16	Comparison between -ve and +ve PCR patients as regard other clinical symptoms	69

Introduction

Since the initial description of Norwalk virus in 1972, Norwalk-like viruses (NLVs) have come to be recognized as the most common causes of outbreaks of acute non bacterial gastroenteritis (Mounts et al., 2000).

Norwalk-like viruses, are genus of genetically diverse, non enveloped single stranded RNA viruses belonging to the family caliciviridae (*Green et al., 2001*). They are approximately 27 to 35 nm in diameter and have amorphous structure with ragged edge (*Liue et al., 1999*). They are classified into 2 genogroups I and II. The genogroups are further divided into various genotypes (*Johansson et al., 2002*).

In industried countries, NLVs may be responsible for 68-80% of outbreaks of gastroenteritis. These outbreaks occur in all age groups and in many settings, including schools, nursing homes, hospitals, cruise ships and restaurants (Fankhauser et al., 2002).

Norwalk-like viruses can be transmitted through contaminated food or water, directly from person to person, and occasionally by airborn droplets produced-during vomiting. Food handlers are often suspected as the source of foodborn outbreaks. Many local and state health departments require that food handler with gastroenteritis do not return to work until 2 or 3 days after they feel better. In addition, because the virus continues to be present in the stool for as long as 2 to 3 weeks after person feels better, strict hand washing after using the bath room and before handling food items is important in preventing the spread of this virus (Daniels et al., 2000 and CDC, 2006a).

The disease is self limiting, mild and characterized by nausea, vomiting, diarrhea and abdominal pain. Headache and low grade fever may occur (*Bresee et al., 2002 and Mathner et al., 2005*). The incubation period is generally reported to be 24-48 hours, but longer duration of incubation has been described (*Bull et al., 2006*).

The major obstacle in the laboratory diagnosis of NLV infection is the lack of tissue culture system for propagating the viruses. Therefore, electron microscopy (EM) has been routinely used to detect NLV particles in stool specimens. However, the sensitivity of EM detection is low, requiring at least 10⁶ particles per ml stool. Positive identification of the virus relies on immune electron microscopy which is not well suited for large scale screening (*Kageyama et al., 2003*). Other serological methods for detection include enzyme

linked immunosorbent assay (ELISA) and radioimmunoassay (RIA) for demonstration of a rising antibody titre against virus in the patients serum (Moe et al., 2004). Reverse transcription-PCR (RT-PCR) has been increasingly used for detection of viruses and would be an attractive alternative for NLV detection. It is highly sensitive to a broad range of NLVs (Kageyama et al., 2003).

Aim of the Work

The aim of this work is the detection and identification of Norwalk-like virus in stool specimens of children suffering from acute diarrhea by reverse transcriptase-polymerase chain reaction (RT-PCR).

Norwalk-Like Viruses

Caliciviruses are recognized as one of the most important causes of acute non bacterial gastroenteritis in sporadic community cases as well as in outbreaks in different settings (*Hedlund et al., 2000*).

The confusing early names of these viruses, which were determined on the basis of the location of their discovery (e.g. Norwalk, Hawaii) or their appearance by EM (e.g. small round structured virus (SRSV), classic viruses), have been clarified (Glass et al., 2000). The human caliciviruses have been divided into 2 major groups on the basis of genome organization, morphology, genetic and antigenic properties. Norwalk virus is the prototype strain for the genus Norwalk like viruses (NLVs). These are small round-structured viruses which are commonly found in association with all ages gastroenteritis. Sapporo virus is the prototype strain for the genus Sapporo like viruses (SLVs) also known as classic calicivirus which causes human gastroenteritis as well (Rochx et al., 2002).

Norovirus is recently approved as the official genus name for group of viruses provisionally described as "Norwalk-like viruses" (*Burton-Macleod et al., 2004*).

Caliciviruses in animals are classified into vesivirus and lagovirus. Vesivirus is represented by swin vesicular exanthema virus and feline calicivirus. However, lagovirus is represented by rabbit hemorrhagic disease virus and European brown hare syndrome virus (Nakata et al., 2000).

A. Historical Aspect:

NLVs are group of related viruses named after the prototype strain Norwalk virus, which was first discovered in 1972 by Albert Kapikian at National Institutes of Health. He used immune electron microscopy to examine fecal samples obtained from infected human volunteers. The volunteers had been given filterates of stool samples collected by Centers for Disease Control and Prevention (CDC) epidemiologists during an outbreak of vomiting at an elementary school in Norwalk, Ohio, in 1968. Initially, no agent could be identified in these specimens, but the filterates given to the volunteers induced gastrointestinal disease, indicating the likelihood of infectious causes. Dr. Kapikian's discovery marked the first time that a virus had definitively demonstrated to cause diarrheal disease in humans. Research conducted during the following decade confirmed that Norwalk virus was significant cause of epidemics of gastroenteritis in a wide variety of settings, and the distinct clinical and epidemiologic features of these outbreaks served as a diagnostic guide in absence of routine laboratory testing (Bresee et al., 2002).

B. Morphology:

The common feature of the family caliciviridae included the presence of a single major structural protein from which the capsid was constructed and the appearance of 32 cup - shaped depression on the surface of the virion arranged in icosahedral symmetry. The name of the new family was derived from the Latin word calix, which mean cup or chalice. Another major feature of this new family was the absence of a methylated cap at the $\overline{5}$ terminus of the virion RNA. Instead, a small protein (VPg) of 10-12 x10³ KDa was shown to be covalently linked to the virion RNA and was described as essential for the infectivity of the RNA (*Green et al., 2000*).

NLVs are approximately 27 to 35 nm in diameter and have an amorphous structure with a ragged edge (Figure 1) (Liue et al., 1999).