EFFECT OF SOME MUTAGENIC AGENTS ON TRITICALE IMPROVEMENT

$\mathbf{R}\mathbf{Y}$

NAGLAA KAMEL ABD EL-HALEM

B. Sc. Agric., (Agronomy), Ain Shams Univ., 1994.

A thesis submitted in partial fulfillment

of

the requirement for the degree of

MASTER OF SCIENCE

in Agricultural Science (Agronomy)

Department of Agronomy Faculty of Agriculture Ain Shams University

APPROVAL SHEET

EFFECT OF SOME MUTAGENIC AGENTS ON TRITICALE IMPROVEMENT

BY

NAGLAA KAMEL ABD EL-HALEM

B. Sc. Agric., (Agronomy), Ain Shams Univ. 1994

This thesis for M. Sc. Degree has been approved by:
Prof. Dr. M. S. Sultan
Prof. of Agron., Dept. of Agron., Fac. of Agric., El-Mansoura Univ
Prof. Dr. A. M. Esmail
Prof. of Agron., Dept. of Agron., Fac. of Agric., Ain Shams Univ
Prof. Dr. K.A. El-Shouny (Supervisor)
Prof. of Agron., Dept. of Agron., Fac. of Agric., Ain Shams Univ.

Date of examination / /2000.

EFFECT OF SOME MUTAGENIC AGENTS ON TRITICALE IMPROVEMENT

BY

NAGLAA KAMEL ABD EL-HALEM

B. Sc. Agric., (Agronomy), Ain Shams Univ. 1994

Under the supervision of:

PROF. DR. KAMAL ABD EL-AZIZ EL-SHOUNY

Prof. of Agron., Fac. of Agric., Ain Shams Univ.

DR. RAMADAN KAMEL HASSAN

Assoc. Prof. of Agron., Fac. of Agric., Ain Shams Univ.

DR. KAMAL IMAM MOHAMED IBRAHIM

Assoc. Prof. of Agron., Fac. of Agric., Ain Shams Univ.

CONTENTS

	Page
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	3
III. MATERIALS AND METHODS	19
IV. RESULTS AND DISCUSSION	22
1. First mutagenic generation.	22
2. Second and third mutagenic generations	35
2.1. Chlorophyll mutations.	35
2.2. Morphological mutations.	44
V. SUMMARY	89
VI. REFERENCES	95
ARABIC SUMMARY	

LIST OF TABLES

No.		Page
1	Effect of mutagenic treatments on plant	24
	height at harvest in M₁.	
2	Effect of mutagenic treatments on number of tillers per	26
	plant in M₁.	
3	Effect of mutagenic treatments on	28
	number of spikes per plant in M₁.	
4	Effect of mutagenic treatments on spike length in M ₁ .	30
5	Effect of mutagenic treatments on number of spikelets	32
	per spike in M ₁ .	
6	Effect of mutagenic treatments on number of grains	34
	per spike in M₁.	
7	Effect of the different mutagenic treatments on $\ensuremath{\text{M}}_2$ -	38
	chlorophyll mutated families in the two lines.	
8	Effect of mutagenic treatments on percentages of M ₂	39
	mutated families in two triticale Lines.	
9	Effect of mutagenic treatments on spectrum of	41
	chlorophyll mutations induced in M ₂ generation.	
10	Effect of different mutagenic treatments on spectrum of	43
	chlorophyll mutations induced in M ₂ generation.	
11	Spectrum of chlorophyll mutations induced in M ₂	45
	generation resulted from mutagenic treatments.	
12	Effect of the interaction between lines and	46
	mutagens on M ₂ chlorophyll mutation spectrum.	
13	Effect of mutagenic treatments on frequency and	48
	percentages of morphologically changed and mutated	
	families in M ₂ and M ₃ generations over two triticale	
	lines	

14	Interaction effect of the different mutagens and line on the percentage of morphological changed and mutated families in M ₂ and M ₃ generations.	50
15	Effect of mutagenic treatments on spectrum of morphological mutations induced in M ₂ generation over two triticale lines.	52
16	Effect of gamma-rays and EI-treatments on morphological changed spectrum recovered in M_2 generation.	54
17	Statistical constants for heading date of changed types in M ₂ generation for two triticale lines.	56
18	Statistical constants for plant height of changed types at harvesting in M ₂ generation for two triticale lines.	57
19	Statistical constants for number of tillers per plant of changed types in M ₂ generation for two triticale lines.	59
20	Statistical constants for number of spikelets per plant of changed types in M ₂ generation for two triticale lines.	60
21	Statistical constants for spike length of changed types in M ₂ generation for two triticale lines.	61
22	Statistical constants for number of spikelets per spike of changed types in M ₂ generation for two triticale lines.	63
23	Statistical constants for number of krenels per spike of changed types in M ₂ generation for two triticale lines.	64
24	Statistical constants for grain yield per main spike of changed types in M ₂ generation for two triticale lines.	65
25	Statistical constants for grain yield per plant of changed types in M ₂ generation for two triticale lines.	67
26	Effect of mutagenic treatments on percentages of mutated families in M_2 , M_3 and in both generation.	69

27	Effect of mutagenic treatments on spectrum of	70
	morphological mutations induced in M ₃ generation.	
28	Statistical constants for heading date of mutant types in	77
	M ₃ generation for two triticale lines.	
29	Statistical constants for plant height of mutant types at	79
	harvesting in M ₃ generation for two triticale lines.	
30	Statistical constants for number of tillers per plant of	80
	mutant types in M ₃ generation for the two triticale lines.	
31	Statistical constants for number of spikes per plant of	81
	mutant types in M ₃ generation for the two triticale lines.	
32	Statistical constants for spike length of mutant types in	82
	M ₃ generation for the two triticale lines.	
33	Statistical constants for number of spikelets per main	84
	spike of mutant types in M ₃ generation for two triticale	
	lines.	
34	Statistical constants for number of kernels per main	85
	spike of mutant types in M ₃ generation for the two	
	triticale lines.	
35	Statistical constants for grain yield per main spike of	86
00	mutant types in M ₃ generation for the two triticale lines.	00
26	,,	87
36	Statistical constants for grain yield per plant of mutant ty	07
	in M ₃ generation for the two triticale lines.	

No.	List of Figures	Page
1	Xantha offtype in M2.	71
2	Tigrina offtype in M2.	72
3	Steriata offtype in M2.	73
4	1)Control, 2)Tall plants, 3)semi-dwarf.	74
5	From left to right, control and late maturity offtype in M2.	75

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	3
MATERIALS AND METHODS	19
RESULTS AND DISCUSSION	
1. First mutagenic generation	22
2. Second and third mutagenic generations	35
I. Chlorophyll mutations	35
II. Morphological mutations	44
SUMMARY	89
REFERENCES	95
ARABIC SUMMARY	

No.	List of Tables	Page
1	Means of plant height at harvest in M ₁ .	24
2	Means of number of tillers per plant at harvest in M ₁ .	26
3	Means of number of spikes per plant at harvest in M ₁ .	28
4	Means of spike length at harvest in M₁.	30
5	Means of spikelets per spike at harvest in M ₁ .	32
6	Means of number of grains per spike at harvest in M ₁ .	34
7	Effect of the different mutagenic treatments on $\ensuremath{\text{M}}_2$ -	38
	chlorophyll mutated families in the two triticale lines.	
8	Effect of mutagenic treatments on frequency and	39
	percentages of M ₂ mutated families in two triticale eines.	
9	Effect of mutagenic treatments on spectrum of	41
	chlorophyll mutations induced in M_2 generation.	
10	Effect of different mutagenic treatments on spectrum of	43
	chlorophyll mutations induced in M ₂ generation.	
11	Effect of two triticale lines on spectrum of chlorophyll	45
	mutations induced in M ₂ generation.	
12	Effect of the interaction between lines and	46
	mutagens on M ₂ chlorophyll mutation spectrum.	
13	Effect of mutagenic treatments on percentages of	48
	morphological changed and mutated families in M2 and	
	M ₃ generations over two triticale lines.	
14	Interaction effect of the different mutagens and lines on	50
	the percentage of morphological changed and mutated	
	families in M ₂ and M ₃ generations.	
15	Effect of mutagenic treatments on spectrum of	52
	morphological mutations induced in M ₂ generation over	
	two triticale lines.	
16	Effect of gamma-rays and El-treatments on	54
	morphological changed spectrum recovered in M2	

generation. 17 Statistical constants for heading date of the controls and 56 changed types in M2 generation for two triticale lines. 18 Statistical constants for plant height of the controls and 57 changed types at harvest in M₂ generation for two triticale lines. 19 Statistical constants for number of tillers per plant of 59 controls and changed types at harvest in M₂ generation for two triticale lines. 20 60 Statistical constants for number of spikelets per plant of the controls and changed types at harvest in M₂ generation for two triticale lines. 21 Statistical constants for spike length of the controls 61 and changed types at harvest in M₂ generat for two triticale lines. 22 Statistical constants for number of spikelets per spike 63 of the controls and changed types at harvest in M₂ generation for two triticale lines. 23 Statistical constants for number of krenels per spike of 64 the controls and changed types at harvest in M₂ generation for two triticale lines. 24 Statistical constants for grain yield per main spike of 65 the controls and changed types at harvest in M_2 generation for two triticale lines. 25 Statistical constants for grain yield per plant of the 67 controls and changed types at harvest in generation for two triticale lines. 26 69 Effect of mutagenic treatments on frequency and

percentages of mutated families in M2, M3 and both

70

Effect of mutagenic treatments on spectrum

generations.

27

	morphological mutations induced in M₃ generation.	
28	Statistical constants for heading date of the controls and	77
	mutant types in M3 generation for two triticale lines.	
29	Statistical constants for plant height of the controls and	79
	mutant types at harvest in M ₃ generation for two triticale	
	lines.	
30	Statistical constants for number of tillers per plant of the	80
	controls and mutant types at harvest in M ₃ generation	
	for the two triticale lines.	
31	Statistical constants for number of spikes per plant of	81
	the controls and mutant types at harvest in M_3	
	generation for the two triticale lines.	
32	Statistical constants for spike length of the controls and	82
	mutant types at harvest in M ₃ generation for the two	
	triticale lines.	
33	Statistical constants for number of spikelets per main	84
	spike of the controls and mutant types at harvest in	
	M3 generation for two triticale lines.	
34	Statistical constants for number of kernels per spike of	85
	the controls and mutant types at harvest in M ₃	
	generation for the two triticale lines.	
35	Statistical constants for grain yield per spike of the	86
	controls and mutant types at harvest in M ₃ generation	
	for the two triticale lines.	
36	Statistical constants for grain yield per plant of	87
	controls trols and mutant types at harvesting in M ₃ generation	
	for the two triticale lines.	

List of Figures

No.		Page
1	Xantha offtype in M_2 .	71
2	Tigrina offtype in M_2 .	72
3	Striata offtype in M_2 .	73
4	1) Control, 2) Tall plants, 3) Semi-dwarf.	74
5	From left to right, control and late maturity offtype in M_2 .	75

Fig. 2: Tigrina offtype in M_2 .

ABSTRACT

Naglaa Kamel. Effect of some mutagenic agents on triticale improvement. Unpublished Master of science thesis, Agronomy Department, Fac. of Agric., Ain Shams University, 2001.

The present investigation was carried out at the Experimental Farms of Faculty of Agriculture, Ain Shams Univ. at both Shoubra El- Kheima in the first season (1995/1996) and Shalakan, Kalubia Governorate in the second and third growing seasons (1996 / 97 and 1997 / 98) to study the effect of treatments with gamma rays and ethyleneimine [EI] on the performance of two triticale lines in the first mutagenic generation as well as to study genetic variability and mutation process in the second and the third mutagenic generations.

Five treatments of gamma rays (0.0, 10, 20, 30 and 40 kr) and six treatments of EI (0.0, 0.08, 0.10, 0.15, 0.20 and 0.25%) were used. Results of the M_1 generation showed that significant differences between the two studied lines in respect to plant height and spike length. Significant and wide difference was noticed between the control and the mutagenic treatments in which the low doses of γ -rays seemed to have a stimulating effect on plant height at 10 kr and number of grains per spike at 10 and 20 kr while the higher doses of 30 and 40 kr caused significant reduction for number of grains per spike. The first four concentrations of EI, viz. 0.08, 0.10,