

Ain Shams University
Faculty of Engineering
Department of Structural Engineering

Behavior of steel tubular poles partially filled with concrete

A Thesis submitted in the Partial Fulfillment for the Requirement of the Degree of Master of Science in civil engineering (Structural)

Submitted by

Moamen Ahmed Khalifa Salem

B.Sc. in Civil Engineering -Structural Engineering
Ain Shams University - Faculty of Engineering

Supervised by

Dr. Amr Abdelsalam Shaat

Associate Professor Structural Engineering Department Ain Shams University

Dr. Sherif Mohamed Ibrahim

Associate Professor Structural Engineering Department Ain Shams University

> November 2017 Cairo-Egypt

Ain Shams University Faculty of Engineering Structural Engineering Department

Behavior of steel tubular poles partially filled with concrete

By Moamen Ahmed Khalifa Salem

B.Sc. in Civil Engineering -Structural Eng.-2012 Ain Shams University – Faculty of Engineering

EXAMINERS COMMITTEE:

Prof. Ashraf Mahmoud Gamal El-din Osman	
Professor of Steel Structures.	
Structural Engineering Department	
Cairo University	
Prof. Adel Helmy Salem	
Professor of Steel Structures.	
Structural Engineering Department Ain Shams University	
Dr. Sherif Mohamed Ibrahim Associate Professor Structural Engineering Department Ain Shams University	
Dr. Amr Abdelsalam Shaat Associate Professor Structural Engineering Department Ain Shams University	

STATEMENT

This thesis is submitted to Ain Shams University, Cairo, Egypt, in

partial fulfillment of the requirements for the degree of Master of Science

in Civil Engineering (Structural department).

The work included in this thesis was carried out by the author at steel

lab of the faculty of engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or qualification at

any other university or institute.

The candidate confirms that the work submitted is his own and that

appropriate credit has been given where reference has been made to the

work of others.

Date: / 2017

Name: Moamen Ahmed Khalifa

Signature: Moamen Khalifa

Ш

ACKNOWLEDGEMENTS

First of all, I thank GOD who guided and helped me to finish this work in the proper shape.

The author would like to express extremely his gratefulness to Dr. Sherif Ibrahim Associate professor, Faculty of Engineering, Ain Shams University, for his highly appreciated effort and support in completing this work.

The author would like to express his deepest appreciation to Dr. Amr Shaat Associate professor, Faculty of Engineering, Ain Shams University, for his experienced advice, continuous and deep encouragement through all phases of the work.

This work was performed in the Structural Steel Laboratory of the Faculty of Engineering, Ain Shams University (Egypt). The author is very grateful for the support of the under graduate student Mohamed Shaker from Ain Shams University

The author would also like to express his gratitude to all the staff of steel structures in the department for their great feelings and support.

Finally, the author would like to express his deepest gratitude and appreciation to his beloved father, mother, brothers for their continuous support, encouragement and guidance.

Steel circular poles are superior to be traditional poles, as they are more durable and lighter in weight. Thin walled steel circular poles often fail by local buckling in bending, before reaching the max. tensile strength of steel. This problem can be solved by increasing wall thickness, but this solution will increase material cost significantly. An economical and simple solution is to stuff the pipe partly with concrete, this research aims to conduct the optimum concrete stuffed length to achieve the max, moment strength with possible least self-weight in steel poles.

The study consists of both testing and analytical phases. Nine steel pipes are divided equally into three groups. All of nine pipes have the same length (2000 mm) and the same wall thickness (2 mm) but with different diameters. Diameters are 114.3, 160, and 202mm.

The three pipes of each group were stuffed with different lengths of concrete, ranging from 11 to 100% of the cantilevered length. The specimens were tested until reaching failure under bending from a single concentrated load at the free end. The results showed that the obtained optimum concrete stuffing ratios were 0.32, 0.43, and 0.50 of the cantilevered length for specimens with diameters 114.3, 160, and 202 consecutively. This is known as the least stuffing length which specimen needs to get the fully stuffed pipe strength.

Analytical methods have been improved for studying the behavior of partly concrete stuffed steel pipes and used to predict the optimum length percentage of concrete stuffing. The methods integrate ovalization methods improved for fully stuffed and empty pipes. The method accounts

for the non-linearity of concrete and plasticity of steel. The method also accounts for local buckling and ovalization of the empty part. The method was verified successfully with testing results. Also, it used in a parametric study to study the influences of key parameters which are D/t ratios, steel yield and ultimate strengths. It was determined that the optimum stuffing length percentage increase as D/t ratio is increased. Also, the optimum stuffing length percentage increases when the ratio between ultimate and yield strength increases.

LIST OF CONTENTS

EXAMINE	CRS COMMITTEE:II
STATEME	ENTIII
ACKNOW	LEDGEMENTSIV
ABSTRAC	TI
LIST OF C	CONTENTSVII
LIST OF F	TIGURESXI
LIST OF T	CABLESXV
NOTATIO	NSXVI
1 INTR	ODUCTION1
1.1	Introduction1
1.2	Research Significance
1.3	Hypothesized Design Approach3
1.4	Objectives Error! Bookmark not defined.
1.5	ScopeError! Bookmark not defined.
1.6	Thesis OutlineError! Bookmark not defined.
2 LITEI	RATURE REVIEW6
2.1	Introduction6
2.2	General Behavior of Hollow Tubes in Flexure6
2.3	Preventing Buckling in Steel Tubular Poles and Other Retrofit
Methods	8

	2.3.1	Concrete-Filled Steel Tubes (CFST)	8
	2.3.2	Composite Concrete-Steel Monopoles (Partially Filled)	12
	2.3.3	Partially Filled Circular Steel Poles	13
	2.3.4 defined.	Steel-Concrete Sectional Composite Poles Error! Bookmark no	ot
	2.3.5	Strengthening Steel Monopoles with Externally Bonded CFRP Error! Bookmark not defined.	
3	EXPE	RIMENTAL PROGRAM2	20
	3.1	Introduction	20
	3.2	Materials used for Test Specimens	20
	3.2.1	Steel Tubes	21
	3.2.2	Concrete	21
	3.3	Description of Test Specimens	22
	3.4	Fabrication of Specimens	22
	3.5	Experimental Setup and Loading	23
	3.5.1	Experimental Setup of specimens	23
	3.5.2	Instrumentation2	24
4	EXPE	RIMENTAL RESULTS AND DISCUSSION	35
	4.1	Introduction	35
	4.2	Ancillary Tests Results	36
	4.3	Results of Cantilever Bending Tests	36
	4.3.1	Results of First Group Tests	37
	4	3.1.1 Load-Deflection Behavior and Failure Modes	37
	4	3.1.2 Load-Strain Behavior	11
	4	3.1.3 Moment-Curvature Behavior	12

	4.3.2	Results of Second Group Tests	42
	4.3.	2.1 Load-Deflection Behavior and Failure	Modes 43
	4.3.	2.2 Load-Strain Behavior	46
	4.3	2.3 Moment-Curvature Behavior	47
	4.3.3	Results of Third Group Tests	47
	4.3.	3.1 Load-Deflection Behavior and Failure	Modes 47
	4.3	3.2 Load-Strain Behavior	51
	4.3	3.3 Moment-Curvature Behavior	52
	4.4 N	Neutral axis position	52
5		TICAL MODELLING AND PARAMETRI	
	5.1 I	ntroduction	71
	5.2 A	Analytical Model for Partially Concrete Fill	ed Steel Tubes72
	5.2.1	Model ProcedureError!	Bookmark not defined.
	5.2.2	Moment-Curvature Response of Concrete-I	Filled Tubes72
	5.2.	2.1 Section Geometry	74
	5.2.	2.2 Material Constitutive Properties	74
	5.2.	2.3 Stresses Acting on Cross-section	
	5.2.	2.4 Internal Forces and Moments	77
	5.2.3	Moment-Curvature Response of Hollow St	eel Tube80
	5.2.4	Load-Deflection Response of Partially Fille	ed Tubes85
	5.3 N	Model Validation	86
	5.3.1	Load-Deflection behavior	87
	5.3.2	Load-Strain behavior	87
	5.4	Optimal Length of Concrete Filling	88

	5.5	Parametric Study	88
	5.5.1	Effect of D/t ratio	89
	5.5.2	Effect of Diameter Variation	90
	5.5.3	Effect of Steel Grade	90
6	SUMM	IARY & CONCLUSIONS	121
	6.1	Summary	121
	6.2	Conclusions	122
	6.3	Recommendations for Future Work	124
R	EFEREN	CES	125
A.	PPENDIX	X (A)	129
A	PPENDIX	X (B) implementation of Analytical models	133
	B.1 Mor	nent-Curvature Response of Concrete-Filled Tubes	133
	B.2 Mor	nent-Curvature Response of Hollow Steel Tube	138

LIST OF FIGURES

Figure 1-1: (a) Problem schematic (b) Effect of concrete fill length on moments
Error! Bookmark not defined.
Figure 1-2: Design parameters for partially filled tubes
Figure 2-1: Hollow tube ovalization behavior (Karamanos, 2002)
Figure 2-2: Model for predicting capacity of a CFST (Elchalakani, 2001)Error! Bookmark not defined.
Figure 2-3: Load-deflection responses of hollow steel tube (Test 6) and partially concrete-filled steel tube (Test 7) (Fouad, 2005)Error! Bookmark not defined.
Figure 2-4: Load-deflection response of partially concrete-filled steel tubes (PCFST 2 & 3), hollow steel tube (PCFST 1), and fully filled tube (PCFST 4) (Mitchell, 2008)
Figure 2-5: Predicted and experimental optimal concrete-filling length ratio (Mitchell, 2008)
Figure 2-6: Steel poles Strengthed with externally bonded CFRP (Lanier, 2005) 19
Figure 3-1: Details of steel coupons Error! Bookmark not defined.
Figure 3-2: Details of test specimens Error! Bookmark not defined.
Figure 3-3: Fabrication of specimens Error! Bookmark not defined.
Figure 3-4: Test setup Error! Bookmark not defined.
Figure 3-5: Loading jack detail

- Figure 3-6: Details at point of load to avoid crushing of tube **Error! Bookmark not defined.**
- Figure 3-7: Reloading of specimen after stroke is fully utilized....**Error! Bookmark** not defined.
- Figure 3-8: Instrumentation details Error! Bookmark not defined.
- Figure 4-1: Steel coupons after failure......Error! Bookmark not defined.
- Figure 4-2: Steel stress-strain curves Error! Bookmark not defined.
- Figure 4-3: Load-deflection behavior for 1st group specimens.....Error! Bookmark not defined.
- Figure 4-4: Failure modes of 1st group specimens ... Error! Bookmark not defined.
- Figure 4-5: Load-strain behavior for 1st group specimens Error! Bookmark not defined.
- Figure 4-6: Moment-curvature for 1st group specimens....... Error! Bookmark not defined.
- Figure 4-7: Comparison between 1st group specimens results**Error! Bookmark not defined.**
- Figure 4-8: Load-deflection behavior for 2nd group specimens....**Error! Bookmark** not defined.
- Figure 4-9: Failure modes of 2nd group specimens.. Error! Bookmark not defined.
- Figure 4-10: Load-strain behavior for 2nd group specimens.. **Error! Bookmark not defined.**

- Figure 4-11: Moment-curvature for 2nd group specimens Error! Bookmark not defined.
- Figure 4-12: Comparison between 2nd group specimens results...**Error! Bookmark** not defined.
- Figure 4-13: Load-deflection behavior for 3rd group specimens ..**Error! Bookmark** not defined.
- Figure 4-14: Failure modes of 3rd group specimens Error! Bookmark not defined.
- Figure 4-15: Load-strain behavior for 3rd group specimens .. **Error! Bookmark not defined.**
- Figure 4-16: Moment-curvature for 3rd group specimens..... Error! Bookmark not defined.
- Figure 4-17: Comparison between 3rd group specimens results ... **Error! Bookmark** not defined.
- Figure 4-18: Variation of neutral axis depth for the three tested groups Error! Bookmark not defined.
- Figure 5-2: Schematic of idealized concrete-filled tube model Error! Bookmark not defined.
- Figure 5-3: Stress-strain behavior of steel tubes......Error! Bookmark not defined.
- Figure 5-4: Stress-strain behavior of concrete in compression and tension...... Error! Bookmark not defined.

- Figure 5-5: Ovalization of cantilevered tube (adopted from Ibrahim, 2000).... Error! Bookmark not defined.
- Figure 5-7: Cross-section geometry of ovalized hollow steel tube **Error! Bookmark** not defined.
- Figure 5-8: Properties of steel stress-strain curve.....Error! Bookmark not defined.
- Figure 5-9: Constructing the load-deflection response from the moment-curvature responses of concrete-filled and hollow sections......Error! Bookmark not defined.
- Figure 5-10: Load-deflection behavior for 1st group specimens ... **Error! Bookmark** not defined.
- Figure 5-11: Load-strain behavior for 1st group specimens ... **Error! Bookmark not defined.**
- Figure 5-12: Load-deflection behavior for 2nd group specimens..**Error! Bookmark not defined.**
- Figure 5-13: Load-strain behavior for 2nd group specimens.. **Error! Bookmark not defined.**
- Figure 5-14: Load-deflection behavior for 3rd group specimens .. **Error! Bookmark** not defined.
- Figure 5-15: Load-strain behavior for 3rd group specimens .. **Error! Bookmark not defined.**
- Figure 5-16: Variation of ultimate load with concrete fill length ratio...... Error! Bookmark not defined.

Figure 5-17: Variation of optimal concrete filling ratio with D/t ratio for various
steel grades Error! Bookmark not defined.
Figure 5-18: Effect of tube diameter on optimal concrete filling ratio for various D/t ratios
Figure 5-19: Effect of Fu/Fy on optimal concrete filling ratio for various D/t ratios Error! Bookmark not defined.
Figure B-1: Input data for filled tubes
Figure B-2: Calculated parameters for filled tubes
Figure B-3: Table for calculating area, strain, stress, force and moment in each layer for filled tubes
Figure B-4: Results table for filled tubes
Figure B-5: Input data for filled tubes
Figure B-6: Calculated parameters for hollow tubes
Figure B-7: Table for calculating area, strain, stress, force and moment in each layer for hollow tubes
Figure B-8: Results table of mid-span section for hollow tubes
Figure B-9: Results table for any of remaining sections for hollow tubes
LIST OF TABLES
Table 2-1: Details of PCFST test specimens (Mitchell, 2008)