# EFFECT OF SESAME SEEDS VARIETY ON CHEMICAL AND TECHNOLOGICAL CHARACTERISTICS OF SOME SESAME FOOD PRODUCTS

#### By

#### **NOHA SHAFIK AZER**

B.Sc. Agric. Sc. (Food Science and Technology) Ain Shams University, 2007

#### A thesis submitted in partial fulfillment

of

the requirements for the degree of

#### MASTER SCIENCE

in

**Agricultural Science** 

(Food Science and Technology)

**Department of Food Science** 

**Faculty of Agriculture** 

**Ain Shams University** 

2013

# EFFECT OF SESAME SEEDS VARIETY ON CHEMICAL AND TECHNOLOGICAL CHARACTERISTICS OF SOME SESAME FOOD PRODUCTS

#### By

#### NOHA SHAFIK AZER

B.Sc. Agric. Sc. (Food Science), Ain Shams University, 2007

#### **Under the supervision of:**

#### Dr. Ibrahim Mohamed Hassan

Prof. Emeritus of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor

#### Dr. Hany Idris Khalil

Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University

#### Dr. Hoda Hanem Fadel

Prof. Emeritus of Flavour Chemistry, Head of Chemistry of Flavour and Aroma Department, National Research Centre

#### **ABSTRACT**

Noha Shafik Azer: Effect of Sesame Seeds Variety on Chemical and Technological Characteristics of Some Sesame Food Products. Unpublished M.Sc. Thesis. Department of Food Science, Faculty of Agriculture, Ain Shams University, 2013.

Three different types of sesame seeds were investigated, differ in origin (Egypt and Sudan) as well in shape and colour (white and red). Physical parameters and chemical composition, as well as oxidation stability and fatty acids profile for different varieties of sesame seeds were investigated. It was found that Sudanese red sesame seeds (SRS) revealed a significant variance compared to Egyptian and Sudanese white sesame seeds.

There was no significant difference in the moisture content of the three studied varieties. Egyptian white sesame seeds (EWS) show significantly higher oil content than Sudanese white sesame seeds (SWS) and Sudanese red sesame seeds (SRS) (56.68% against 49.73% and 48.83%, respectively). The protein content of SWS was lower than that of EWS and SRS. EWS contained lower amount of crude fiber.

The peroxide values obtained for the three sesame varieties are very low, i.e. less than 0.5 meq/Kg oil. Sudanese red sesame oil (SRSO) had a relatively low content in the free fatty acids (oleic acid %) compared to Egyptian white sesame oil (EWSO) and Sudanese red sesame oils (SRSO). The EWSO shows a remarkable stability to oxidation compared to SWSO and SRSO. The highest Rancimat was found in sesame oil extracted from EWS compared to SWS and SRS oils.

Oils of the three studied sesame seeds were analyzed to determine their fatty acid composition. The most abundant fatty acids were linoleic, oleic and palmitic acids, which together comprised about 88% in SWSO and up to 97% of the total fatty acids in EWSO and SRSO. Oleic and linoleic acids are the major fatty acids of sesame oils and they are found to be present in large amounts in the oils of the three studied sesame seeds, constituting more than 70% of the total.

Palmitic acid was the major saturated fatty acid of sesame oil comprising a ratio ranged between 15.85 to 18.47%. A high level of palmitic acid was found in Sudanese white sesame oil.

Sesame paste was produced from the three types of seeds. In conclusion, tehina samples were a good source of oil and protein. However, crude oil and crude fiber of sesame paste from EWS were high, but crude protein was lower in sesame paste produced from SWS and SRS.

Flow behaviour of sesame paste was investigated under different temperature ranged from 30 to 60°C. At these temperatures sesame paste exhibited non-Newtonian behavior. There was a significant difference between the emulsion stability of the Sudanese red sesame paste (SRSP) and that of the Egyptian white sesame paste (EWSP) and Sudanese white sesame paste (SWSP). The emulsion stability was higher in sesame paste produced from SRS.

The headspace volatiles of the three samples were isolated and subjected to Gas chromatography-Mass spectrometry (GC-MS) analysis. A total of 38 volatile compounds were positively identified. The pyrazines, that having nutty aroma, were the predominant volatiles in all investigated samples, however sample SWS comprised the highest content of these compounds. Aldehydes were the second major volatiles in all samples.

Sensory evaluation showed insignificant (P>0.05) differences between all examined tehina samples for all tested varieties. Sample SWS exhibited the highest score of flavour quality compared to other samples. This may be due to the high content of pyrazines in the volatiles of this sample.

### **Contents**

|        |                                              | Page |
|--------|----------------------------------------------|------|
| LIST   | OF TABLES                                    | III  |
| LIST   | OF FIGURES                                   | IV   |
| LIST   | OF ABBREVIATION                              | XI   |
|        | NTRODUCTION                                  | 1    |
|        | EVIEW OF LITERATURE                          | 5    |
| 2.1.   | J                                            | 5    |
| 2.2.   | 1                                            | 6    |
| 2.2.1. | FAO Statistics                               | 7    |
| 2.2.1. | 1 Top export                                 | 7    |
| 2.2.1. | 2. Top imports                               | 9    |
| 2.3.   | Types of sesame seeds                        | 11   |
| 2.4.   |                                              | 11   |
| 2.5.   |                                              | 12   |
| 2.6.   | Health benefits of sesame seeds and products | 15   |
| 2.7.   | Industrial use                               | 17   |
| 2.8.   | Sesame seeds                                 | 20   |
| 2.8.1. | Physical parameters                          | 20   |
| 2.8.2  | Proximate chemical composition               | 21   |
| 2.9.   | Sesame oil                                   | 21   |
| 2.9.1. | Oxidative stability of sesame oil            | 21   |
| 2.9.2. | Fatty acids composition                      | 26   |
| 2.10.  | Sesame paste (Tehina)                        | 27   |
| 2.10.1 | 1. Proximate chemical composition            | 28   |
| 2.10.2 | 2. Rheological properties                    | 29   |
| 2.10.3 | 3. Flavour volatiles                         | 31   |
| 2.10.4 | 4. Emulsion stability (ES)                   | 34   |
| 2.10.5 | 5. Colour                                    | 35   |
| 2.10.6 | 5. Sensory evaluation                        | 35   |
| 3. M   | IATERIALS AND METHODS                        | 38   |
| 3.1.   | Samples                                      | 38   |
| 3.1.1. | Sesame seeds                                 | 38   |
| 3.1.2. | Sesame oil                                   | 38   |
| 3.1.3. | Sesame paste (Tehina)                        | 38   |
|        | Methods                                      | 39   |
|        | Sesame seeds                                 | 39   |
|        | 1. Physical properties                       | 39   |
|        | 1.1. Length, width and thickness (L,W&T)     | 39   |

|         | <ul> <li>.2. The geometric mean diameter D<sub>g</sub></li> <li>.3. The Sphericity Ø</li> </ul>                    | 39<br>39 |
|---------|--------------------------------------------------------------------------------------------------------------------|----------|
|         |                                                                                                                    | 39       |
|         | .4. The surface area S                                                                                             | 40       |
| 3.2.1.1 | <ul> <li>.4.1. Transverse surface area (A<sub>t</sub>)</li> <li>.4.2. Flat surface area (A<sub>f</sub>)</li> </ul> | 40       |
|         | .5. Volume (v)                                                                                                     | 40       |
|         | .6. Mass of 1000 seeds                                                                                             | 40       |
|         | .7. Volume of 100gm seeds                                                                                          | 40       |
|         | .8. Bulk density of seeds (Bd)                                                                                     | 40       |
|         | . Proximate chemical composition                                                                                   | 41       |
|         | Sesame oil                                                                                                         | 41       |
| 3.2.2.1 | . Oxidative stability                                                                                              | 41       |
|         | . Fatty acids analysis                                                                                             | 41       |
| 3.2.2.2 | .1. Oil extraction                                                                                                 | 41       |
| 3.2.2.2 | .2. Fatty acids composition                                                                                        | 41       |
| 3.2.3.  | Sesame paste (Tehina)                                                                                              | 42       |
| 3.2.3.1 | . Proximate chemical composition                                                                                   | 42       |
| 3.2.3.2 | . Rheological measurements                                                                                         | 42       |
| 3.2.3.3 | . Emulsion Stability (ES)                                                                                          | 43       |
| 3.2.3.4 | . Colour                                                                                                           | 44       |
| 3.2.3.5 | . Flavor volatiles                                                                                                 | 45       |
| 3.2.3.5 | .1. Isolation of headspace volatiles                                                                               | 45       |
| 3.2.3.5 | .2. Gas chromatographic (GC) analysis                                                                              | 45       |
| 3.2.3.5 | <ul><li>.3. Gas chromatographic – mass spectrometric (GC-MS) analysis</li></ul>                                    | 46       |
| 3.2.3.6 |                                                                                                                    | 46       |
| 3.2.3.7 | · · · · · · · · · · · · · · · · · · ·                                                                              | 47       |
| 4. RE   | SULTS AND DISCUSSION                                                                                               | 48       |
| 4.1.    | Sesame seeds                                                                                                       | 48       |
| 4.1.1.  | Physical properties                                                                                                | 48       |
| 4.1.2.  | Proximate chemical composition                                                                                     | 49       |
|         | Sesame oil                                                                                                         | 51       |
|         | Oxidative stability                                                                                                | 51       |
| 4.2.2.  | Fatty acids composition                                                                                            | 52       |
| 4.3.    | Sesame paste                                                                                                       | 57       |
|         | Proximate chemical composition                                                                                     | 57       |
|         | Rheological measurements                                                                                           | 58       |
|         | Emulsion stability                                                                                                 | 63       |
|         | Colour                                                                                                             | 64       |
| 4.3.5.  | Flavor volatiles                                                                                                   | 66       |

| 4.3 | 3.6. Sensory evaluation | 76 |
|-----|-------------------------|----|
| 5.  | SUMMARY AND CONCLUSION  | 77 |
| 6.  | REFERENCES              | 81 |
| 7.  | ARABIC SUMMARY          |    |

### LIST OF TABLES

| Table No. | Title                                                         | Page |
|-----------|---------------------------------------------------------------|------|
| 1.        | Major exporters of sesame seeds                               | 8    |
| 2.        | Major importers of sesame seeds                               | 10   |
| 3.        | Some physical properties of sesame seeds                      | 49   |
| 4.        | Proximate chemical composition of sesame seeds                | 50   |
| 5.        | Oxidative stability of sesame Oil                             | 51   |
| 6.        | Fatty acids composition of sesame oil                         | 53   |
| 7.        | Some chemical proximate of sesame paste                       | 58   |
| 8.        | Rheological parameters of power-law equation for sesame paste | 59   |
| 9.        | The parameters of Arrhenius equation of sesame paste samples  | 62   |
| 10.       | Emulsion stability of different sesame paste samples          | 64   |
| 11.       | Colour parameters of sesame paste samples                     | 65   |
| 12.       | Aldehedye compounds identified in sesame paste samples        | 67   |
| 13.       | Ketone compounds identified in sesame paste samples           | 68   |
| 14.       | Pyrazine compounds identified in sesame paste samples         | 69   |
| 15.       | Furan compounds identified in sesame paste samples            | 71   |
| 16.       | Pyrrole compounds identified in sesame paste samples          | 72   |

| 17. | Alcohol compounds identified in sesame paste  | 73 |  |
|-----|-----------------------------------------------|----|--|
|     | samples                                       | 73 |  |
| 18. | Pyridine compounds identified in sesame paste | 73 |  |
|     | samples                                       | 73 |  |
| 19. | Thiazole and sulphide compounds identified in | 74 |  |
|     | sesame paste samples                          | /- |  |
| 20. | Sensory evaluation scores of sesame paste     |    |  |
|     | samples                                       | 76 |  |

## **List of Figures**

| Fig. No. | Title                                                     | Page |
|----------|-----------------------------------------------------------|------|
| 1        | Top production of sesame seeds 2011                       | 6    |
| 2        | Top exporters of sesame seeds 2010                        | 7    |
| 3        | Top importers of sesame seeds 2010                        | 9    |
| 4        | Fatty acids from sesame oil                               | 55   |
| 5        | Chromatogram for the composition of fatty acids from EWSO | 56   |
| 6        | Chromatogram for the composition of fatty acids from SWSO | 56   |
| 7        | Chromatogram for the composition of fatty acids from SRSO | 57   |
| 8        | Flow behaviour curve for EWSP different temperatures      | 60   |
| 9        | Flow behaviour curve for SWSP different temperatures      | 60   |
| 10       | Flow behaviour curve for SRSP different temperatures      | 61   |
| 11       | Chart of activation energy                                | 62   |
| 12       | Colour parameters of sesame paste                         | 65   |