ACKNOWLEDGMENT

Thanks Allah for your blessing and help during this study

I would like to express deepest gratitude to **Prof.Dr. Awaad Mohamed Kandeel** Prof,of Floriculture, Faculty of Agriculture - Ain Shams University for supervision, discussion, guidance and continuous encouragement and critical reading of this manuscript

My deep thanks and gratitude to **Prof.Dr. Hesham Ibrahim Elkasas** Prof,of Soil and Water Environment, Vice Dean of Institute Environmental Studies Research - Ain Shams University for the continuous supervision, discussion, valuable advice in the final presentation of this work and his valuable orientation as well as his kind support.

My deep thanks and gratitude to **Prof.Dr. Samiha Abu El Fotouh Ouda**Head Researches – Department of Water Requirements and Field Irrigation Researches
Institute of Soil, Water and the Environmental Agriculture Research Center who
suggested the point of research and for valuable advice as well as continuous help
and encouraging during the whole work and critical reading of this manuscript.

I express my deep thanks to my family especially my parents and my wife for their support during this work.

SIMULATION OF THE EFFECT OF ADAPTATION STRAEGIES ON IMPROVING YIELD OF SOME CROPS GROWN UNDER EXPECTED CLIMATE CHANGE CONDITIONS

By Ihab Moneer Ahmed Mahmoud

B.Sc. Agric.(Horticulture). Ain Shams University – 1999

A Thesis Submitted in Partial Fulfillment of
The Requirements for the Master Degree in
Environmental Science

Department of Agricultural Sciences

<u>Under The Supervision of:</u>

Prof.Dr./ Awaad Mohamed Kandeel

Emeritus Prof,of Floriculture, Faculty of Agriculture - Ain Shams University

Prof.Dr./ Hesham Ibrahim Elkasas

Prof, of Soil and Water Environment, Vice Dean of Institute Environmental Studies Research - Ain Shams University

Prof.Dr. / Samiha Abu El Fotouh Ouda

Head Researches – Department of Water Requirements and Field Irrigation Researches Institute of Soil, Water and the Environmental Agriculture Research Center

SIMULATION OF THE EFFECT OF ADAPTATION STRAEGIES ON IMPROVING YIELD OF SOME CROPS GROWN UNDER EXPECTED CLIMATE CHANGE CONDITIONS

By

Ihab Moneer Ahmed Mahmoud

B.Sc. Agric.(Horticulture). Ain Shams University, 1999

A Thesis Submitted in Partial Fulfillment of
The Requirements for the Master Degree in
Environmental Science

Department of Environmental Agricultural Sciences Institute of Environmental Studies & Research Ain Shams University

APPROVAL SHEET

SIMULATION OF THE EFFECT OF ADAPTATION STRATEGIES ON IMPROVING YIELD OF SOME CROPS GROWN UNDER EXPECTED CLIMATE CHANGE **CONDITIONS**

By

Ihab Moneer Ahmed Mahmoud

B.Sc. Agric.(Horticulture).Ain Shams University— 1999

This Thesis Towards a Master Degree in Environmental Science Has Been Approved by:

Name

Prof.Dr/ Emam M.S. Nofal Emeritus Prof, of Floriculture, Fac.Agric-

Kafr El-Shikh Univ.

Prof.Dr/ Mohamed Elsayed Elnennah Emeritus Prof, of Soils, Fac. Agric-.

Ain Shams Univ.

Prof.Dr/ Awaad Mohamed Kandeel

Emeritus Prof, of Floriculture, Fac. Agric -Ain Shams Univ.

Prof.Dr/Hesham Ibrahim Elkassas

Prof, of Soil and Water Environment, Dean of Institute Environmental Studies Research -Ain Shams University

Signature

H.T. Elkassas

Contents

introduction	1
Review of Literatures	5
	5
Review of Literatures 1. CropSyst model 2. Effect of climatic change	9
9	9
	13
-	16
	16
	20
Materials and Methods	22
1. Wheat crop	22
•	22
	24
	25
-	27
•	27
•	27
	29
	30
_	32
	32
3. Actual water consumptive use (CU); i.e. actual evapotranspiration (ET	a) 33
3.1.Seasonal water use	33
3.2. Monthly water consumptive use	33
3.3.Water use efficiency (WUE)	
	33
4. Evapotransipiration	34
4.1. Potential evapotransipiration, PET	34
4.2. Reference crop evapotransipiration (ET _o)	
5. Metrological factors	34
_	34
·	34
· · · · · · · · · · · · · · · · · · ·	35
·	35
	37
5.2.2. Solar or short wave Radiation (R _s)	37
5.2.3. Relative short wave radiation (R_s/R_{so})	37

5.2.4. Relative sunshine duration (n/N)	38	
5.2.5. Albedo (lpha) and net solar radiation (R $_{ m ns}$	38	
5.2.6. Net long wave radiation (R _{nl})	38	
5.2.7. Net radiation (R _n)	39	
5.3. Soil heat flux (G)	39	
5.4. Air temperature and air humidity	39	
5.5. Wind speed	40	
6. Potential evapotranspiration determined by estimated ET formula	40	
6.1. Modified Penman method	40	
6.2. Doorenbos and Pruitt method	42	
6.3. Pan evaporation method	42	
6.4. Penman Monteith method	42	
7. Net radiation	44	
8. Comparison with the actual ET	45	
9. Soil analyses	45	
10. Statistical analysis	45 45	
11. Data baseline		
12. Climate change scenarios	46	
13.Crop Simulation Model Study	46	
14.Simulation process using cropsyst model	46	
15.Required parameters	47	
15.1. Climatic data	47	
15.2. Soils data	47	
15.3. Crop variables	47	
15.4. Plant and management variables for the crop models	48	
15.5. Crop model calibration/ validation	48	
Results and Discussions:	49	
1.Wheat crop	49 49	
·	49	
1.1. Crop model calibration1.2. Crop model validation	51	
1.3. Effect of climate change scenarios on wheat yield	52	
1.4. Effect of adaptation strategies on Sakha 93	54	
1.4.1. Changing sowing date	54	
1.4.2. Effect of changing irrigation schedule	56	
1.4.2.1. Under 1st sowing date	56	
1.4.2.2. Under 2nd sowing date	58	
1.4.2.3. Under 3rd sowing date	60	
1.4.2.5. Onder 5rd 50Wing date	62	

1.4.3. Interaction between irrigation schedule and sowing date	64
1.4.3.1. First irrigation schedule	64
1.4.3.2. Second irrigation schedule	66
1.4.3.3. Third irrigation schedule	68
1.4.3.4. Fourth irrigation schedule	70
1.5. Effect of adaptation strategies on Giza 168	72
1.5.1. Changing sowing date	72
1.5.2. Effect of changing irrigation schedule	74
1.5.2.1. Under 1st sowing date	74
1.5.2.2. Under 2nd sowing date	76
1.5.2.3. Under 3rd sowing date	78
1.5.2.4. Under 4th sowing date	80
1.5.3. Interaction between irrigation schedule and sowing date	82
1.5.3.1. First irrigation schedule	82
1.5.3.2. Second irrigation schedule	84
1.5.3.3. Third irrigation schedule	86
1.5.3.4. Fourth irrigation schedule	88
•	
2. Maize crop	90
2.1. Crop model calibration	90
2.2. Crop model validation	92
2.3. Effect of climatic change scenarios	93
2.4. Effect of adaptation strategies on TWG31	95
2.4.1. Changing sowing date	95
2.4.2. Effect of changing irrigation schedule	97
2.4.2.1 Under 1 st growing date	97
2.4.2.2. Under 2 nd growing date	99
2.4.2.3. Under 3 rd growing date	101
2.4.2.4 Under 4 th sowing date	103
2.4.3. Interaction between irrigation schedule and sowing date	105
2.4.3.1. First irrigation schedule	105
2.4.3.2. Second irrigation schedule	107
2.4.3.3. Third irrigation schedule	109
2.4.3.4. Fourth irrigation schedule	111
2.5. Effect of adaptation strategies on TWC324	113
2.5.1. Effect of changing sowing date	113
2.5.2. Effect of changing irrigation schedule	115
2.5.2.1. Under 1 st sowing	115
2.5.2.2. Under 2 nd sowing date	117
2.5.2.3. Under 3 rd sowing date	119
2.5.4.4. Under 4 th sowing date	121
2.5.5. Interaction between irrigation schedule and sowing date	123
2.5.5.1. First irrigation schedule	123

2.5.5.2. Second irrigation schedule	125
2.5.5.3. Third irrigation schedule	127
2.5.5.4. Fourth irrigation schedule	129
conclusion	
Summary	134
References	138
Arabic Summary	

List of Figures

Figure No

1.	Comparison between predicted and measured wheat yield (ton/ha) in both growing seasons.	49
2.	Comparison between predicted and measured biological wheat yield (ton/ha) in both growing seasons.	50
3.	Comparison between predicted and measured wheat consumptive use (mm) in both growing seasons.	51
4.	Comparison between predicted and measured maize yield (ton/ha) in both growing seasons.	90
5.	Comparison between predicted and measured biological maize yield (ton/ha) in both growing seasons	91
6.	Comparison between predicted and measured maize consumptive use (mm) in both growing seasons	92

List of Tables

Table No

1.	Soil mechanical analysis at Kalubia Governorate	23
2.	Soil moisture constants of the experimental field at Kalubia	
	Governorate	23
3.	Metrogecal data for the experimental site.	24
4.	Soil moisture constants of the experimental field at Giza Agricultural	
	Station	28
5.	Soil mechanical analysis at Giza Agricultural Station	28
6.	Metrological data for the experimental site	29
7.	Measured versus predicted wheat grain yield (ton/ha) in the two	
	growing seasons	49
8.	Measured versus predicted wheat biological yield (ton/ha) in the two	
	growing seasons.	50
9.	Measured versus predicted wheat consumptive use (mm) in the two	
	growing seasons.	51
10.	Percent change in wheat grain and biological yields (ton/ha) and	
	consumptive use (mm) as a result of the two climatic change scenarios	
	in the 1 st growing season	52
11.	Percent change in grain and biological yields and consumptive use of	
	wheat	53
12.	Effect of changing sowing dates on wheat yield, applied irrigation	
	amounts and water use efficiency for Sakha 93 under A2 scenario	54
13.	Effect of changing sowing dates on wheat yield, applied irrigation	
	amounts and water use efficiency for Sakha 93 under B2 scenario.	55
14.	Effect of changing irrigation schedule on wheat yield, applied	
	irrigation amounts and water use efficiency for Sakha 93 under A2	
	scenario	56
15.	Effect of changing irrigation schedule on wheat yield, applied	
	irrigation amounts and water use efficiency for Sakha 93 under B2	
	scenario	57
16.	Effect of changing irrigation schedule on wheat yield, applied	
	irrigation amounts and water use efficiency for Sakha 93 under A2	
	scenario	58
17.	Effect of changing irrigation schedule on wheat yield, applied	
	irrigation amounts and water use efficiency for Sakha 93 under B2	
	scenario	59
18.	Effect of changing irrigation schedule on wheat yield, applied	
	irrigation amounts and water use efficiency for Sakha 93 under A2	
	scenario	60

19.	Effect of changing irrigation schedule on wheat yield, applied irrigation amounts and water use efficiency for Sakha 93 under B2	<i>C</i> 1
20.	scenario Effect of changing irrigation schedule on wheat yield, applied irrigate	61
	amounts and water use efficiency for Sakha 93 under B2 scenario Percent improvement in predicted wheat grain yield, corresponded percentage of predicted irrigation amount and water use efficiency for Sakha 93 as a result of changing irrigation schedule for 5 th	62
	sowing date under B2 scenario.	63
22.	Percent improvement in Sakha 93 grain yield, corresponded percentage of predicted irrigation amount and water use efficiency under A2 climate change scenario and the interaction between the	<i>C</i> 1
23.	first sowing date and changing irrigation schedule. Percent improvement in Sakha 93 grain yield, corresponded percentage of predicted irrigation amount and water use efficiency under B2 climate change scenario and the interaction between the	64
	first sowing date and changing irrigation schedule	65
24.	Percent improvement in Sakha 93 grain yield, corresponded percentage of predicted irrigation amount and water use efficiency under A2 climate change scenario and the interaction between the	
25	second sowing date and changing irrigation schedule.	66
25.	Percent improvement in Sakha 93 grain yield, corresponded percentage of predicted irrigation amount and water use efficiency under B2 climate change scenario and the interaction between the second sowing date and changing irrigation schedule.	67
26.	Percent improvement in Sakha 93 grain yield, corresponded percentage of predicted irrigation amount and water use efficiency under A2 climate change scenario and the interaction between the	
27.	third sowing date and changing irrigation schedule. Percent improvement in Sakha 93 grain yield, corresponded percentage of predicted irrigation amount and water use efficiency under B2 climate change scenario and the interaction between the	68
20	third sowing date and changing irrigation schedule.	69
28.	Percent improvement in Sakha 93 grain yield, corresponded percentage of predicted irrigation amount and water use efficiency under A2 climate change scenario and the interaction between the	
29.	fourth sowing date and changing irrigation schedule. Percent improvement in Sakha 93 grain yield, corresponded percentage of predicted irrigation amount and water use efficiency	70
	under B2 climate change scenario and the interaction between the third sowing date and changing irrigation schedule	71

30.	Percent improvement in predicted wheat grain yield, corresponded percentage of predicted irrigation amount and water use efficiency	
	for Giza 168 as a result of changing sowing date under A2 climate change scenario	72
31.	Percent improvement in predicted wheat grain yield, corresponded	12
J1.	percentage of predicted irrigation amount and water use efficiency for Giza 168 as a result of changing sowing date under B2 scenario	73
32.	Percent improvement in predicted wheat grain yield, corresponded percentage of predicted irrigation amount and water use efficiency for Circ. 168 as a result of changing irrigation schodule for 2 nd	
	for Giza 168 as a result of changing irrigation schedule for 2 nd sowing date under A2 scenario.	74
33.	Percent improvement in predicted wheat grain yield, corresponded	/ ¬
	percentage of predicted irrigation amount and water use efficiency for Giza 168 as a result of changing irrigation schedule for 2 nd	
	sowing date under B2 scenario	75
34.	Percent improvement in predicted wheat grain yield, corresponded percentage of predicted irrigation amount and water use efficiency for Gize 168 as a result of changing irrigation schoolule for 2 rd sowing	
	for Giza 168 as a result of changing irrigation schedule for 3 rd sowing date under A2 scenario	76
35.	Percent improvement in predicted wheat grain yield, corresponded	70
55.	percentage of predicted irrigation amount and water use efficiency for Giza 168 as a result of changing irrigation schedule for 3 rd	
	sowing date under B2 scenario	77
36.	Percent improvement in predicted wheat grain yield, corresponded	
	percentage of predicted irrigation amount and water use efficiency for Giza 168 as a result of changing irrigation schedule for 4 th sowing	
	date under A2 scenario	78
37.	Percent improvement in predicted wheat grain yield, corresponded	
	percentage of predicted irrigation amount and water use efficiency	
	for Giza 168 as a result of changing irrigation schedule for 4 th sowing	
	date under B2 scenario	79
38.	Percent improvement in predicted wheat grain yield, corresponded	
	percentage of predicted irrigation amount and water use efficiency	
	for Giza 168 as a result of changing irrigation schedule for 5 th sowing date under A2 scenario	80
39.	Percent improvement in predicted wheat grain yield, corresponded	80
37.	percentage of predicted irrigation amount and water use efficiency	
	for Giza 168 as a result of changing irrigation schedule for 5 th	0.1
40	sowing date under B2 scenario Percent improvement in Gize 168 grein yield corresponded	81
40.	Percent improvement in Giza 168 grain yield, corresponded percentage of predicted irrigation amount and water use efficiency under A2 climate change scenario and the interaction between the	

	first sowing date and changing irrigation schedule.	82	
41.	Percent improvement in Giza 168 grain yield, corresponded		
	percentage of predicted irrigation amount and water use efficiency		
	under B2 climate change scenario and the interaction between the first		
	sowing date and changing irrigation schedule	83	
42.	Percent improvement in Giza 168 grain yield, corresponded		
	percentage of predicted irrigation amount and water use efficiency		
	under A2 climate change scenario and the interaction between		
	the second sowing date and changing irrigation schedule	84	
43.	Percent improvement in Giza 168 grain yield, corresponded		
	percentage of predicted irrigation amount and water use efficiency		
	under B2 climate change scenario and the interaction between the		
	second sowing date and changing irrigation schedule	85	
44.	Percent improvement in Giza 168 grain yield, corresponded		
	percentage of predicted irrigation amount and water use efficiency		
	under A2 climatic change scenario and the interaction between		
	the third sowing date and changing irrigation schedule	86	
45.	Percent improvement in Giza 168 grain yield, corresponded		
	percentage of predicted irrigation amount and water use efficiency		
	under B2 climatic change scenario and the interaction between the		
	third sowing date and changing irrigation schedule	87	
46.	Percent improvement in Giza 168 grain yield, corresponded		
	percentage of predicted irrigation amount and water use efficiency		
	under A2 climatic change scenario and the interaction between the	0.0	
	fourth sowing date and changing irrigation schedule	88	
47.	Percent improvement in Giza 168 grain yield, corresponded		
percentage of predicted irrigation amount and water use efficiency			
	under B2 climatic change scenario and the interaction between the	00	
	fourth sowing date and changing irrigation schedule.	89	
48.	Measured versus predicted maize grain yield (ton/ha) in the two	00	
40	growing seasons	90	
49.	Measured versus predicted maize biological yield (ton/ha) in the two	01	
50	growing seasons	91	
50.	Measured versus predicted maize consumptive use (mm) in the two	92	
<i>5</i> 1	growing seasons	92	
51.	Percent change in maize grain and biological yields (ton/ha) and		
	consumptive use (mm) as a result of the two climatic change scenarios in the 1 st growing season	93	
52	Percent change in grain and biological yields and consumptive use of)3	
32.	maize yield as a result of the two scenarios in the 2^{nd} growing season	94	
52	Effect of changing sowing date on maize yield, applied irrigation	ノマ	
JJ.	amounts and water use efficiency for TWG310 under A2 scenario	95	
	amounts and water use efficiency for 1 WOSTO under M2 section	10	

54	4. Effect of changing sowing date on maize yield, applied irrigation amounts and water use efficiency for TWG310 under B2 scenario.	96
55	5. Effect of changing irrigation schedule on maize yield, applied irrigation amounts and water use efficiency for TWG310 under A2	
54	scenario 5. Effect of changing irrigation schedule on maize yield, applied irrigation	97
	amounts and water use efficiency for TWG310 under B2 scenario	98
	7. Effect of changing irrigation schedule on maize yield, applied irrigation amounts and water use efficiency for TWG310 under A2 scenario	99
58	3. Effect of changing irrigation schedule on maize yield, applied irrigation amounts and water use efficiency for TWC310 under B2	
59	scenario D. Effect of changing irrigation schedule on maize yield, applied irrigation amounts and water use efficiency for TWG310 under A2	100
60	scenario D. Effect of changing irrigation schedule on maize yield, applied irrigation amounts and water use efficiency for TWG310 under B2	101
61	scenario 1. Effect of changing irrigation schedule on maize yield, applied irrigation amounts and water use efficiency for TWG310 under B2 scenario	102
62	2. Percentage of change in TWG310 grain yield, corresponded percentage of predicted irrigation amount and water use efficiency under A2 climatic change scenario with the interaction between first sowing date and changing irrigation schedule	103
	3. Percentage of change in TWG310 grain yield, corresponded percentage of predicted irrigation amount and water use efficiency under B2 climate change scenario and the interaction between the first sowing date and changing irrigation schedule.	105
64	4. Percentage of change in TWG310 grain yield, corresponded percentage of predicted irrigation amount and water use efficiency under B2 climate change scenario and the interaction between the first sowing date and changing irrigation schedule.	
65	5. Percentage of change in TWG310 grain yield, corresponded percentage of predicted irrigation amount and water use efficiency under A2 climate change scenario and the interaction between the first	106
66	sowing date and changing irrigation schedule 6. Percentage of change in TWG310 grain yield, corresponded percentage of predicted irrigation amount and water use efficiency under B2 climate change scenario and the interaction between the first	107
	sowing date and changing irrigation schedule.	108

67.	Percentage of change in TWG310 grain yield, corresponded	
	percentage of predicted irrigation amount and water use efficiency	
	under A2 climate change scenario and the interaction between first	
	sowing date and changing irrigation schedule.	109
68.	Percentage of change in TWG310 grain yield, corresponded	
	percentage of predicted irrigation amount and water use efficiency	
	under B2 climatic change scenario and the interaction between the	
	first sowing date and changing irrigation schedule	110
69.	Percentage of change in TWG310 grain yield, corresponded	
	percentage of predicted irrigation amount and water use efficiency	
	under A2 climatic change scenario and the interaction between the	
	first sowing date and changing irrigation schedule.	111
70.	Percentage of change in TWG310 grain yield, corresponded	
	percentage of predicted irrigation amount and water use efficiency	
	under B2 climatic change scenario and the interaction between the	
	first sowing date and changing irrigation schedule.	112
71.	Percentage of change in predicted maize grain yield, corresponded	
	percentage of predicted irrigation amount and water use efficiency for	
	TWG324 as a result of changing sowing date under A2 climatic	
	change scenario.	113
72.	Percentage of change in predicted maize grain yield, corresponded	
	percentage of predicted irrigation amount and water use efficiency for	
	TWG324 as a result of changing sowing date under B2 climatic change	
	scenario.	114
73.	Percentage of change in predicted maize grain yield, corresponded	
	percentage of predicted irrigation amount and water use efficiency for	
	TWG324 as a result of changing irrigation schedule for 1 st sowing	
	date under A2 scenario.	115
74.	Percentage of change in predicted maize grain yield, corresponded	
	percentage of predicted irrigation amount and water use efficiency for	
	TWG324 as a result of changing irrigation schedule for 1 st sowing	
	date under B2 scenario	116
75.	Percent improvement in predicted maize grain yield, corresponded	
	percentage of predicted irrigation amount and water use efficiency for	
	TWG324 as a result of changing irrigation schedule for 1 st sowing	
	date under A2 scenario	117
/6.	Percentage of change in predicted maize grain yield, corresponded	
	percentage of predicted irrigation amount and water use efficiency for	
	TWG324 as a result of changing irrigation schedule for the 1 st sowing	
	date under B2 scenario.	118