ANTIMICROBIAL COMPOUNDS IN SOME LOCAL MEDICINAL PLANTS

THESIS
SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR
THE DEGREE
OF
DOCTOR OF PHILOSOPHY
IN
AGRICULTURAL MICROBIOLOGY

BY

Essam Mohamed Abd-El Aziz Hoballah

B.Sc. Agric. (Soil Science), Cairo University, 1983 M.Sc. Agric. (Agricultural Microbiology), Cairo University (Fayoum Branch), 1999

> Department of Agricultural Microbiology Faculty of Agriculture Cairo University

> > 2006

Cairo University
Faculty of Agriculture
Department of Agricultural Microbiology

SUPERVISION SHEET Antimicrobial Compounds in Some Local Medicinal Plants

By

Essam Mohamed Abd-El Aziz Hoballah

B.Sc. Agric. (Soil Science), Cairo University, 1983 M.Sc. Agric. (Agricultural Microbiology), Cairo University, 1999

Under Supervision of:

Prof. Dr. Ismail Hosny

Prof. of Agricultural Microbiology, Department of Agric. Microbiology, Faculty of Agriculture, Cairo University.

Prof. Dr. Laila Zohdy

Prof. of Agricultural Microbiology, Department of Agric. Microbiology, National Research Center, Giza. Name of Candidate: Essam Mohamed Abd-El Aziz Hoballah

Ph. D.

Title of Thesis: Antimicrobial Compounds in Some Local Medicinal Plants.

Supervisors : Prof. Dr. Ismail Hosny Ali Hosny

Prof. Dr. Laila Ismail Zohdy

Department: Agricultural Microbiology

Branch Approval

Abstract

Degree:

The antimicrobial effectiveness of 32 Egyptian medicinal plants chosen on notions including anti-microbial potency, widespread dispersal as well as some commercial judges was bio-assayed against 22-test microorganisms, 13 bacteria and 9-phytopathogenic fungi. The bacteria included 10 non-phytopathogenic Gram positive and Gram negative bacteria and 3-phytopathogenic bacteria included Erwinia carotovora, Erwinia chrysanthemi and Xanthomonas campestris. The phytopathogenic fungi are affiliated to **Zygomycetes**, **Ascomycetes** and **Deuteromycetes**. n-Hexane and methanol solvents were used to extract low and high polar constituents respectively at the rate of 25% dry plant materials for each solvent in a successive manner using Soxhlet extractor and then tested for their antimicrobial potency using agar diffusion method. Results signified that the probed different parts of the tested medicinal plants exerted varied antimicrobial potency, however, at dissimilar intensities. The most effective extracts against investigated microorganisms were the n-hexane and methanol extracts of Cymbopogon proximus, and followed by the hexane extract of Ammi majus that antagonized most of non-phytopathogenic bacteria and phytopathogenic fungi. MIC were determined for the most six potent plant extracts exerting the highest activity against tested phytopathogenic microorganisms, the n-hexane extracts of Artemisia herba-

alba and C. proximus and the methanol extracts of A. majus and C. proximus antagonized *E. carotovora* by 9.38, 8.60, 6.70 and 4.40 g.L⁻¹ respectively. However, n-hexane extract of C. proximus and methanol extract of Cupressus sempervirens antagonized Penicillium digitatum by 2.20 and 5.00 g.L⁻¹ respectively. In a laboratory experiment the anti-citrus green mould caused by **P.** digitatum on navel orange fruits and anti-potato tubers soft rot caused by *E. carotovora* were bio-assayed by treating artificial orange and potato tubers surfaces wounds with the determined MICs of the selected extracts and then inoculated them with the caustic agent, and incubating both fruits and tubers for intervals ranging between 5 and 10 days, the disease incidence percentage and disease severity index DSI were then determined. The results in orange green mould experiment showed that the n-hexane extract of C. proximus and the methanol extract of C. sempervirens exhibited the highest incidence against citrus green mould disease, as both decreased disease incidence percentage and DSI compared to untreated fruits as well as delaying the disease symptoms for 10 days. Whereas, the results in potato tubers soft rot experiment showed that the nhexane extract of C. proximus, the methanol extract of Artemisia herba-alba displayed the most potent effects against potato tubers soft rot, which they decreased disease incidence percentage and DSI compared with untreated tubers besides delaying the disease symptoms up to 10 days. Five extracts due of 4 medicinal plants included A. majus, A. herba-alba, C. sempervirens and C. proximus extracted by n-hexane, methanol and methylene chloride were chosen to recognize their various potent compounds using TLC technique. Bio-autographic pictures of the active ingredients towards P. digitatum and E. carotovora were pinched for each plant extract by the direct method. The active spots against tested microorganisms were then investigated to determine their chemical nature using specific chemical reagents. The results showed that the n-hexane extract of C. proximus had the most potent antifungal agent at R_f of 0.442 and 0.538, and they were

identified as volatile phenolic esters and phenolic compounds respectively. Also the most potent antibacterial agent in the methanol extract of *A. herbaalba* and the n-hexane extract of *C. proximus* were identified by TLC as flavonoid and volatile phenolic esters respectively.

Acknowledgment

This work has been carried out under the supervision of **Professor Dr. I. Hosny**, Professor of Agricultural Microbiology, Faculty of Agriculture, Cairo University and **Professor Dr. Laila Zohdy**, Professor of Agricultural Microbiology, National Research Center (NRC). The author wishes to express his deep appreciation and sincere gratitude to them for suggesting the problem, supervision, valuable suggestion and help throughout the work and preparation of the thesis.

Deep appreciation is introduced to **Professor Dr. Mohamed Saber**, Professor of Ecological Microbiology, (NRC), for guidance, appreciable help, unfailing assistance and encouragement.

Thanks are also due to all staff members in Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University.

Thanks for my colleagues in the Agricultural Microbiology Department, Plant Pathology Department and Pharmacology Department in, NRC, for their ready help.

Table of contents

'Attle	q
Introduction	1
Review of Literature	2
Incidence of antibacterial agents in medicinal plants and its related	
species	3
Alhagi species-Ammi species- Anastatica species- Artemisia species	3
Balanites species- Cassia species	5
Citrullus species	6
Cleome species- Convolvulus species- Cupressus species	7
Cuscuta species- Cymbopogon species	8
Cyperus species- Gypsophylla species Juncus species- Juniperus species	(
Peganum species- Polygonum species- Ranunculus species- Sesbania species	
Solenostemma species- Tribulus species- Ziziphus species	
Zygophyllum species	
Preparation of plant materials and methods of extraction	
Methods used to prove antimicrobial activity	
The commonly used methods	
I- Diffusion method	
II- Dilution method	
Preparing of emulsion surfactants for stabilizing hydrophobic extracts	
Incidence of anti-phytopathogenic agents in some medicinal plants	
I-Anti-phytopathogenic effect of some medicinal plants in vitro	
II-Active antimicrobial principles of some medicinal plants as control	
of plant pathogens	
1-Against some phytopathogenic fungi	
2-Against some phytopathogenic bacteria	4
Antimicrobial bioassay (in vitro) of some medicinal plants in different	
areas in the world	2
Mode of action of some medicinal plant components	2
I-General antimicrobial mode of action	2
II-Antimicrobial mode of action of different medicinal plant chemical	
groups	4
1) Non-volatile substances	2
2) Volatile substances	2
Major groups of the antimicrobial compounds from plants	2
1-Phenolics	
2-Coumarins	4
3-Tannins	-
4-Anthroquinones and Anthroquinones glycosides	2

-Antibacterial potency	49
I-Potent extracts against non-phytopathogenic bacteria	50
II-Potent extracts against phytopathogenic bacteria	50
-Antifungal potency	51
Potent extracts against fungi	51
Minimum inhibitory concentration (MIC) towards some	
phytopathogenic microorganisms	52
MIC towards the phytopathogenic bacteria	52
MIC towards the fungi	55
Use of medicinal plant extracts to control certain post- harvest	
phytopathogenic micro-organisms	63
Orange green mould	64
Potato tubers soft rot	66
Chromatographical and Bio-autographical studies on some medicinal	
plant extracts	76
TLC and bioautographic screening	77
1-Methanol extract of <i>A. majus</i>	77
2-Methylene chloride extract of <i>A. majus</i>	80
3-Methanol extract of <i>A. herba-alba</i>	81
4-Methanol extract of <i>C. sempervirens</i>	81
5-n-Hexane extract of <i>C. proximus</i>	82
Conclusion	84
References	94
Summary	113
•	121
Arabic Summary	141

Abbreviations used:

Abbreviation Fu	all name Ab	breviation	*Full name
E. faecalis	Enterococcus faecalis	A. maurorum	Alhagi maurorum (Medic.)
M. roseus	Micrococcus roseus	A. majus	Ammi majus L.
S. lutea	Sarcina lutea	A. hierochuntica	Anastatica hierochuntica L.
Staph. aureus	Staphylococcus aureus	A. judaica	Artemisia judaica L.
B. stearothermophilus	Bacillus stearothermophilus	A. herba-alba	Artemisia herba-alba Asso.
B. subtilis	Bacillus subtilis	B. aegyptiaca	Balanites aegyptiaca (L.) Del.
E. carotovora	Erwinia carotovora	C. fistula	Cassia fistula L.
E. chrysanthemi	Erwinia chrysanthemi	C. africana	Cleome africana (Botsch.)
E. coli	Escherichia coli	C. droserifolia	Cleome droserifolia (Forssk)
Ps. aeruginosa	Pseudomonas aeruginosa	C. colocynthis	Citrullus colocynthis (L.) Schard.
Ps. fluorescens	Pseudomonas fluorescens	C. althaeoides	Convolvulus althaeoides L.
X. campestris	Xanthomonas campestris	C. sempervirens	Cupressus sempervirens L.
M. phlei	Mycobacterium phlei	C. arabica	Cuscuta arabica Fres.
A. alternata	Alternaria alternata	C. proximus	Cymbopogon proximus (Hochst.)
A. faolena	Alternaria faolena	C. dactylon	Cynodon dactylon (L.) Pres.
A. flavus	Aspergillus flavus	C. esculentus	Cyperus esculentus L.
A. niger	Aspergillus niger	C. papyrus	Cyperus papyrus L.
B. cinerea	Botrytis cinerea	C. rotundus	Cyperus rotundus L.
C. albicans	Candida albicans	D. peregrinum	Delphinium peregrinum L.
F. solani	Fusarium solani	G. capillaris	Gypsophila capillaris (Forssk)
P. digitatum	Penicillium digitatum	J. arabicus	Juncus arabicus (Asch et Buch)
		J. phoenicea	Juniperus phoenicea L.
		L. farctum	Lagonychium farctum (Banks& Sol.)
		P. harmala	Peganum harmala L.
		P. australis	Phragmites australis (Cav.)
cv.	Cultivar variety.	P. maritimum	Polygonum maritimum L.
pv.	Pathogen variety (pathogenicity).	R. asiaticus	Ranunculus asiaticus L.
ssp.	Sub-species of microorganism.	S. sesban	Sesbania sesban L.
		S. argel	Solenostemma argel (Del.) Hyne.
		T. longipetalus	Tribulus longipetalus Viv.
		Z. spina-christi	Ziziphus spina-christi (L.) Willd.
		Z. coccineum	Zygophyllum coccineum L.
e.g	(From the Latin exempli gratia) meaning	ng	
··8	for example.	R_{f}	Retardation factor (TLC).
. 1	(From Latin et alii/alia) used especial	-	Solvent front (TLC).
et al	after names to indicate other people		Solvent Hont (TLC).
	1 1	OI .	
	things.		
		_	G 1 (TT C)
etc	(From Latin et cetera) used after a list	14	Substance distance (TLC).
	show that there are other things that ye		
	could have mentioned (Remember	to	
	take some paper, a pen, etc.).		
i.e.	(From Latin idest) to explain exact	ly TNT	Tetranitro-tetrazolium-chloride
1.0.	what the previous thing that means.		(Bio-autogram).
	1 0		(Dio-autogram).
NB	Written to tell someone to pa	y TTC	2,3,5-triphenyl tetrazolium
ייי		·, 11C	chloride (Bioautogram).
	attention to something important.		chorue (Bioautogram).
	TT 1	. —	
viz.	Used to introduce a list of things th		
•	explain something more clearly are give	en DSI	Disease severity index.
	as example.	201	,
		MIC	Minimum inhibitory concentration

^{*}Tackholm (1974), Boulos (1983), Bedevian (1994) and Chevalier (1996).

INTRODUCTION

Since antiquity, 2900 BC, ancient Egyptians highly praised the strength of some medicinal plants in therapeutics, however, the best pharmaceutical witness might be the "Ebers Papyrus" dating back to 1500 BC; in which they renowned over 700 drugs. In addition, Traditional African System of Medicine endows with intimations on how these plants could be worn as antimicrobial agents. Several medicinal plants illustrate impending activity as antimicrobial agents, warranting further investigation (Iwu *et al.*, 1999 and Newman *et al.*, 2000). Nowadays, tens of thousands of plants have already been considered for their antimicrobial potency (Rai and Mares, 2003).

From an agricultural point of view, escalating interest in the possible incidence of antimicrobial substances in higher plants is unmistakable, predominantly in medicinal plants (Hoballah, 1999). Therefore, scores of efforts have been done to ascertain new antimicrobial principals in such plants. The most important of which are folk medicines, and systemic screening of them might outcome an innovation of novel potent agents (Nitta *et al.*, 2002). It is interesting to determine whether the traditional uses of the selected medicinal plants are strengthened by actual antimicrobial potency or merely based on folklore.

The present work was carried out on a number of selected local medicinal plants which are usually found as wild flora in desert or uncultivated soils or introduced in crop rotation. Medicinal plant extracts were tested for their antibacterial and antifungal effects on a variety of microorganisms. Highly potent antimicrobial extracts were examined as control agents against some post-harvest diseases. Active anti-pathogenic agents were subjected to chromatographic and bioautographic studies to determine the nature of active ingredients present.

Review of literature

The ancient Egyptians put much confidence in plants for curing many diseases. Up till now, the same confidence is still existing among the contemporary Egyptians and a "turn-back" to "remedy by herbs" is now becoming a global rather than regional or national request. This is strongly favoured, since the natural drugs have little or no side effects as do the chemically synthesized medications.

The medicinal plants growing in the various habitats in Egypt represent a major and important component of these plants, which are threatened and some are on the brink of extinction.

Since times immemorial, the use of plants for curing human diseases has been in practice everywhere. Such use of plants is a part of the human history in Egypt as well as in all the countries of N. Africa and the Middle East. The people in the region depended mainly on traditional medicine for their health care needs and the ailments of their animals. The folk medicine in the region is full of receipes for curing various diseases (Batanouny *et al.*, 1999).

Medicinal plants are an important health and economic component of the floras in developed as well as developing countries. Many plant species were investigated for their antimicrobial active constituents. This has been done depending on the information of the folk use of these plants, or in species with relatives of species, genera or the same family, known from other countries to have antimicrobial active constituents.

Floristic analyses show that there are about 500.000 plant species on our planet. Out of these, about 12.000 plant species can be used to create biologically active products, which are used in disease treatments. In folk medicine, thousands of years ago medicinal plants products were used in treating a wide spectrum of infectious and other diseases (Pepeljnjak *et al.*, 2003).

From the agriculture point of view, the microbial infections of plants represent significant losses of agricultural products. After sustained and/ or

extensive use of existing antimicrobial agents, microorganisms exploited resistance against them. Therefore, it is logical that the search for new prototype antimicrobial products should also include natural products. In particular, medicinal plants are a logical choice, chiefly because of their seemingly infinite variety of novel molecules, which are often referred to as "secondary metabolites". Antimicrobial agents are widely distributed among medicinal plants, but only a few have been evaluated for their activity against plant pathogenic microorganisms (Mongelli, 2003).

Incidence of antimicrobial agents in selected medicinal plants and their related species:

The present literature will be limited to the investigated plants in this study. *Alhagi* **species:**

Bonjar (2004 a) Screened the antibacterial activity of plants used in Iran as folkloric medicine. The author found that, *Alhagi maurorum* showed antimicrobial properties against *Escherichia coli*, *Klebsiella pneumonia*, *Staph. aureus* and *Bacillus cereus*.

Ammi majus species:

Naqvi et al. (1990) studied antimicrobial investigations on Indian medicinal plants. They found that, Ammi majus extract had antifungal effect against Microsporum canis and Trichophyton mentagrophytes.

Anastatica species:

Rizk *et al.* (1993) studied the constituents of *Anastatica hierochuntica* growing in Qatar. They reported that, the plant extracts possess moderate antimicrobial activity against *Staph. aureus*.

Artemisia *species*:

Mahmoud et al. (1987) studied Egyptian desert plant, Artemisia herba- alba antimicrobial effect. They found that, A. herba- alba essential oil was highly effective against Staph. aureus that followed by Salmonella sp., Pseudomonas aeruginosa, E. coli and B. subtilis in descending order respectively. Yashphe et al. (1987) investigated the essential oils from Artemisia herba- alba populations for

their antimicrobial activity. All the oils had slight antibacterial activity against G bacteria (E. coli, Shigella sonni, Salmonella typhosa, Serratia marcescens and Pseudomonas aeruginosa) and against G⁺ bacteria (Bacillus subtilis, Streptococcus hemolyticus and Staph. aureus). Amin et al. (2002) studied 250 Iranian plants for their antifungal activity. They found that Artemisia herba-alba extract showed antifungal activity against Microsporum canis, Penicillium notatum and Mucor ramosissimus. Khafagi and Dewedar (2000) evaluated Sinai medicinal plants for antimicrobial activity. They found that Artemisia herba-alba hexane extract showed antibacterial effect against Proteus vulgaris but it had no effect against Candida albicans, Microsporum canis, Trichophyton sp. and T. mentagrophytes, otherwise, ethanol extract had an effect against Staph. aureus, C. albicans, M. canis and Trichophyton sp. and T. mentagrophytes.

Ferenczy et al. (1972) revealed the screening of antimicrobial effect in higher plants. They found that, Artemisia vulgaris and A. cardunculus showed antibacterial activity towards B. cereus and C. albicans. Valsaraj et al. (1997) studied the antimicrobial effect of some selected medicinal plants from India. They found that, Artemisia vulgaris had antibacterial effect against Staph. aureus, B. subtilis, Ps. aeruginosa and E. coli. Dulgar and Gonuz (2004) investigated the antimicrobial activity of certain plants used in Turkish folkloric medicine. Their results revealed that, Artemisia vulgaris showed no effect towards E. coli, Staph. aureus, Ps. aeruginosa, B. subtilis, Micrococcus luteus and Candida albicans.

Naqvi et al. (1990) studied antimicrobial investigations on Indian medicinal plants. They found that, Artemisia scoparia showed antimicrobial effect against Staph. aureus, Streptococcus pyogenes, S. viridans, Diplococcus pneumonia, Microsporum canis, Trichophyton mentagrophytes, C. albicans and C. tropicalis.

Also, Badran and Aly (1995) found that, the plant extracts of *Artemisia cina* showed an inhibitive effect on *Alternaria alternata*, *Aspergillus flavus*, *A. niger* and *Penicillium chrysogenum*. On the other hand, the medicinal plants *Artemisia molinieri*, *A. selengensis* and *A. stolonifera* were studied for the antifungal effect against some phytopathogenic fungi. Swiader and Zarawska (1996) found that, all species of *Artemisia* tested were active against the tested phytopathogenic fungi *C.*

albicans, Aspergillus fumigatus, Fusarium culmorum and Alternaria solani. Vajs et al. (2004) studied the antifungal activity of davanones and coumarins isolated from Artemisia lobelia. They found that, all the compounds inhibited the growth of A. niger, A. flavus, Alternaria alternata, Penicillium ochrochloron and P. funiculosum.

Dulgar et al. (1999) studied the antifungal activity of Artemisia absinthium. They found that, A. absinthium had antimicrobial activity against E. coli, B. cereus, B. subtilis, Mycobacterium smegmatis, Sarcina lutea, M. luteus, Staph. aureus and Erwinia amylovora. Mangena and Muyima (1999) studied the antimicrobial activity of Artemisia afra essential oil. They found that, A. afra has a broad spectrum of inhibitory activity against Streptococcus pyogenes, Micrococcus luteus, Staph. aureus, B. subtilis and Erwinia carotovora. Stavri et al. (2005) studied the bioactive constituents of Artemisia monosperma. They found that, only eriodyctiol-7-methyl ester has activity against Mycobacterium sp. and Staph. aureus.

Balanites species:

Adamu *et al.* (2005) investigated the antimicrobial screening of some Nigerian plants. They found that, *Balanites aegyptiaca* extracts showed antimicrobial activity against *Proteus mirabilis*, *Ps. aeruginosa*, *Staph. aureus* and *E. coli*.

Cassia species:

Valsaraj et al. (1997) studied the antimicrobial effect of some selected medicinal plants from India. They found that, Cassia fistula had antibacterial effect against Staph. aureus, B. subtilis, Ps. aeruginosa and E. coli. Samy et al. (1998) found that, 34 plant species, selected on the basis of folklore medicinal reports in India were assayed for antibacterial activity against (G bacteria) E. coli, Klebsiella aerogenes, Proteus vulgaris and Ps. aeruginosa. They found that, Cassia fistula showed significant antibacterial activity against the tested bacteria. Bonjar (2004 b), evaluated the antibacterial properties of some medicinal plants in Iran. He found