ABDOMINAL ULTRASOUND IN EARLY DIAGNOSIS OF NECROTIZING ENTEROCOLITIS

Thesis submitted for partial fulfillment of master degree in

Pediatrics

BY

Abd-Elsatar Abd-Elsatar Ibrahim M.B., B.Ch., (2005)

Under supervision of

Prof. Safaa Shafik Emam
Prof. of Pediatrics
Faculty of Medicine – Ain Shams University

Prof.Sherine Kadry Amin
Prof. of radiology
Faculty of Medicine – Ain Shams University

Ass.Prof.Maha Hassan Mohamed
Ass .Prof. of Pediatrics
Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
(2013)

Acknowledgement

First and foremost I would like and have to thank and praise God for his blessing and help along the long way of coming where I am today.

I would like to express my sincere thanks and extreme gratitude to **Dr.Safaa Shafik Emam,**Prof. of Pediatrics,Faculty of Medicine – Ain Shams University for her great support, supervision, suggestion and guidance throughout this work.

I would like to thank and express my great indebtedness to **Dr.Maha Hassan Mohamed**, Ass .Prof. of Pediatrics, Faculty of Medicine – Ain Shams University for selection of the subject, her close supervision, clarification, suggestion and scientific help taking much of her time and effort.

I would like to express my deep appreciation to **Dr.Sherine Kadry Amin,**Ass.Prof. of radiology, Faculty of Medicine – Ain Shams University, for her generous support, meticulous supervision, her cooperation and guidance consuming much of her time and effort.

I would like to thank **Dr Ihab Alhakim** Prof. of Pediatrics Faculty of Medicine – Ain Shams University, for his great effort on my statistics and the final outcome of the work.

I would like to thank parents of patients for their generous cooperation and acceptance of work.

Dedication

I would like to thank my parents, my family especially my wife, and all my colleagues for their support and tolerance.

Table of content

Acknowledgement	
Dedication	
Table of content	1
List of abbreviations	Ш
List of tables	V
List of figures	VI
Introduction	1
Aim of the work	3
Review of literature	
Definition	4
Epidemiology	6
Risk Factors	8
Pathogenesis	16
Pathology	25
Diagnosis	28
Complications	33
Investigations	37
Prevention	53
Treatment	60
Patients and Methods	69
Results	78
Diamontos	400

Contents

Recommendation	118
Summary	119
References	122
Arabic Summary	

List of abbreviations

AXR: abdominal x ray. Ca: Calcium. *cm*: centimeter. *E. coli:* Escherichia coli. *E.L.B.W.:* extremely low birth weight infants. GIT: gastrointestinal tract. H: hour. I/R: ischemia and reperfusion injury. IgA: Immunoglobulin A. IgG: Immunoglobulin G. *IL – Ira:* interleukin I receptor antagonist. *IL:* interleukin. IM: intramuscular. iNOS: inducible iso-form of nitric oxide synthase. IV: intravenous. K: Potassium. kg: kilogram. *L:* litter. **LUAC:** low set umbilical arterial catheter. mg: milligram. ml: millimeter. mmHg: millimeter mercury. mRNA: messenger RNA. -ve: negative. Na: Sodium.

NEC: Necrotizing entercolitis.

NICUs: Neonatal Intensive Care Unit.

NO Synthase: nitric oxide synthase.

NO: Nitric Oxide.

Numb: number.

+ve: positive.

PAF: Platelet Activating Factor.

PAF-AH: Platelet Activating Factor-acetylhydrolase.

PDA: patent ductus arteriosus.

Perc: percentage.

PROM: premature rupture of membranes.

RCT: randomized controlled trial.

RDS: Respiratory Distress Syndrome.

RHIL 10: recombinant human interleukin 10.

SGA: small for gestational age.

SIRS: Systemic inflammatory response syndrome.

staph.: Staphylococcus.

TNF: Tumor Necrotizing Factor.

U.S.A: United States of America.

UAC: umbilical arterial catheter.

UK: United Kingdom.

V.L.B.W.: very low birth weight.

Vit.: vitamin.

List of tables

Table (1):Modified Bell's Staging Criteria for Neonatal Necrotizing	30,31-
Enterocolitis	69,70
Table (2): Differentiation between Necrotizing Enterocolitis and	52
Volvulus	
Table (3): Sex distribution among the study groups	79
Table (4): Mode of delivery	80
Table (5): Gestational age distribution among the study groups	80
Table (6): Weight distribution among the study groups	80
Table (7): Maternal and neonatal risk factors encountered among the	81,82
study groups	
Table (8): Frequency of clinical manifestation among the study groups	83,84,85
and its percentage	
Table (9): Frequency of laboratory findings among the study group	87,88
Table (10): Type of organisms in culture and sensitiity	93
Table (11): The mean CRP values among the study groups	93
Table (12): Frequency of X-ray findings among the study groups	94
Table (13): Frequency of abdominal ultrasonographic findings among	96,97
the study groups	
Table (14): The frequency of sonar findings while comparing group I	101,102
with group II+III	

List of figures

Figure (1): Severe Abdominal distension of the baby with NEC(El-hussein university hospital).	32
Figure (2): Severe Abdominal distension with visible abdominal veins in a	32
baby with NEC (El-hussein university hospital).	
Figure (3): An enema revealed a short stricture at the site that was	34
ulcerated (between open arrows)	
Figure (4): Contrast evaluation of the mucus fistula demonstrates a long	34
stricture of the transverse colon	
Figure (5): Straightening of the normal bowel configuration is seen in the	38
right side of the abdomen and in the transverse colon (short thin arrows). A	
normal gas pattern is seen in the left lower quadrant	
Figure (6): Bowel wall thickening well seen between adjacent bowel loops.	39
A penrose drain was placed following perforation of the bowel	
Figure (7): Bowel wall thickening with increased distance between loops	39
and thumb-printing in transverse and descending colon (short arrows)	
Figure (8): Intramural air in the colon (short arrows)	40
Figure (9): Free air outlining the falciform ligament (short fat arrows), Air	40
collecting as a large lucency overlying most of the abdomen (football sign),	
Air on the inside and outside of the bowel wall (short thin arrows)	
Figure(10): Normal intestinal loop and Intestinal loop with multiple	44
hyperechogenic foci denoting intramural air	
Figure (11): Ultrasound evaluation of the bowel showing wall thickening	44

and ascitis in a child with NEC	
Figure (12): Twenty-three week gestation infant on day two of life with	45
echoic lines in the liver representing gas in the portal system (arrow heads).	
This bubbled through the vessels during the study	
Figure (13): Transverse sonogram shows two focal fluid collections as well	45
as several collapsed loops of echogenic bowel	
Figure(14): Longitudinal sonogram of the right upper quadrant 1 hour later	46
shows distended fluid-filled loops of bowel with increased echogenicity of	
the wall	
Figure (15): Color Doppler sonogram of the left flank shows a loop of bowel	47
That has absence of flow in most of its circumference	
Figure (16): Longitudinal color Doppler sonogram of the left flank shows	48
Two loops of bowel (A, B). Loop A is hyperemic, whereas loop B shows	
absence of flow	
Figure (17): Sex distribution among the study groups	79
Figure (18): Hypoxia is very high significant risk factor for NEC.	86
Figure (19): RDS is significant risk factor for NEC	86
Figure (20): Thrombocytopenia is very high significant risk factor in early	88
diagnosis of NEC.	
Figure (21): Anemia is high significant risk factor in early diagnosis of NEC	89
Figure (22): CRP is high significant factor in early diagnosis of NEC	89
Figure (23): Positive blood culture is high significant in early diagnosis of	90
NEC.	
Figure (24): Acidosis is very high significant factor in early diagnosis of NEC	90

Figure (25): Hyponatremia is very high significant factor in early diagnosis of	91
NEC	
Figure (26): Gaseous distension is very significant factor in early diagnosis	94
of NEC .	
Figure (27): Intramural air is very high significant finding in early diagnosis	96
of NEC	
Figure (28): Increased wall thickness shows no significance in early	97
diagnosis of NEC.	
Figure (29): Decreased wall thickness shows no significance in early	97
diagnosis of NEC	
Figure (30): Ascites shows no significance in early diagnosis of NEC	98
Figure (31): Portal venous gas shows no significance in early diagnosis of	98
NEC	
Figure (32): Air under diaphragm shows no significance in early diagnosis of	99
NEC	
Figure (33): A 30 weeks neonate (control group) (a) normal abdominal x-ray	101
(b) normal intestinal loop sonography with preserved bowl wall signature.	
Figure (34): A 31 weeks neonate stage I NEC showing (a) X-ray shows	102
distension of loops of intestine (b) Sonar shows bowel distension with increased bowel wall echogenicity (white arrow).	
Figure(35): A 30 weeks neonate stage IB NEC showing (a) X-ray shows	103
distension of loops of intestine (b) Sonar shows hyperechoic foci in the wall	
of intestine (white arrow) (c) Portal vein diameter = 2.7mm.	
Figure (36): A 31 weeks neonate stage IIB NEC showing (a) X-ray shows	104
distension of loops of intestine (b) Sonar shows distended loop ,hyperechogenic foci (white arrow).	
Figure (37): A 30 weeks neonate stage IB NEC showing (a) X-ray shows	105

distended loops of intestine and increased wall thickening (b) Ultrasound shows hyperechogenic foci with thinning of the bowl wall (white arrow).	
Figure (38): A31 weeks stage IIIB NEC showing (a) X- ray shows air under	106
diaphragm (b) Sonar longitudinal section shows dense hyperechoic foci in	
the intestinal wall (white arrow) (c) Free ascites between the anterior	
abdominal and intestinal wall by ultrasonography (white arrow).	
Figure (39): A 32 weeks neonate stage IIB NEC showing (a) X ray shows portal venous gas (dark arrow) (b) X-ray for the same neonate 3 days later showing intramural air (white arrow) (c) Sonar shows thinning of intestinal wall (0.7 mm) with hyperechoic foci shows air bubbles at portal vein branches (dark arrow) and PV diameter =0.22mm.	107
Figure (40): A 31 weeks neonate stage IIIB NEC showing NEC (a) X-ray shows air under diaphragm (white arrow) (b) Transverse sonogram shows focal fluid collection (short arrow) as well as several collapsed loops of echogenic bowel(long arrow).	112

Introduction

Necrotizing enterocolitis (NEC) is the most common acquired gastrointestinal disease among newborns; affecting 1% to 5% of infants requiring neonatal intensive care and resulting in approximately 3000 deaths per year (*Lee and Polin,2003*).

Infants weighing between 500 and 1500 grams at birth and born before 28 weeks gestation constitute most NEC patients at many institutions and have thus been identified at highest risk of developing the disease (*Chandler et al.*, 2000).

Mortality secondary to NEC in the preterm infants population weighing less than 1000 grams ranges from 35% to 50%. Infants who develop NEC are at increased risk of death, infection, and long term health consequences that include bowel stricture, fistula, abscess, recurrent NEC, short-gut syndrome and complications related to long term total parenteral nutrition (*Bisquera et al.*, 2002).

Retrospective surveys have identified numerous risk factors for the development of NEC including umbilical vessel catheterization (*McComrmack et al.*, 1987), hypoxaemia and hypotension (*Bunton*, 1997), intrauterine growth retardation (*Baschat et al.*, 2007) and prematurity (*Hsueh et al.*, 2003). In term infants, underlying congenital heart disease has been identified as a major risk for the development of NEC (*Ostlie et al.*, 2003).

Fever, Neutropenia, abdominal pain, and diarrhea are common manifestations of enterocolitis, and clinical signs and symptoms range from mild evidence of septicemia to perforation. Physical examination findings may range from mild abdominal pain to point tenderness, peritoneal inflammation signs, and homodynamic shock (*Van de Wetering et al.*, 2003).

In addition to suggestive clinical scenario, imaging is required to further corroborate the diagnosis of NEC, because other gastrointestinal disorders can have similar presentations (e.g. diverticulitis, appendicitis, tubulo-ovarian abcess, or cholecystitis) (*Buchheidt et al.*,2003).

The important benefit of ultrasonography. in oure series is that it is more sensitive than plain radiography in early stage. we can detect bowel abnormalities suggestive of pneumatosis intestinalis on ultrasonography in patient with early stage of NEC by demonstrating acrogenic dots or dense granular echogenicites in the bowel wall (Goske, Goldblum, Applegate, et al.,1999).

It can also be done bedside and does not need transport of the patient especially critically ill patient compared to CT.

It can also be repeated with out exposure to ionizing radiation, so it can be used in the follow up and monitoring of the case.

It also can be useful in deciding adequate time for reinitiating and advancement of feeding during the follow up of NEC patients.