

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ELECTRICAL POWER AND MACHINES DEPT.

INVESTIGATION OF SURFACE PHENOMENA ON POLYMER COMPOSITE INSULATORS DUE TO WATER DROPLETS UNDER HIGH VOLTAGE.

A Thesis

Submitted in Partial Fulfillment for the Requirement of the Degree of Master of Science in Electrical Engineering

By

Ahmed Mohamed Husieny Abo-se'da

B.Sc. Electrical Engineering, Ain Shams University, 2006

Supervised By

Prof. Dr. Mahmoud Abd El-Hamed

Electrical Power & Machines Dept.
Faculty of Engineering
Ain Shams University

Prof. Dr. Loai Saad El-deen Nasrat

Electrical Power & Machines Dept.
Faculty of Engineering
Aswan University

Prof. Dr. Samia Habib Mansour

Polymers & Pigments Dept. National Research Center

Cairo – 2013

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master in Electrical Engineering.

The work included in this thesis was carried out by the author at high voltage laboratory in Electrical Power & Machines department and Polymers and Pigments department in National Research Center (N.R.C). No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Acknowledgement

My greatest thanks to the God Almighty for giving me the will power and strength to make it this far when I did not see a light

I am grateful to **Professor Dr. Mahmoud Abd El-Hamed** for his able guidance and support throughout the research work.

I would like to extend my sincere thanks to my supervisor **Professor Dr. Loai Saad El-deen Nasrat** for his continuous support and encouragement. His experience and research interest in the area of polymeric insulators encouraged me to select this topic. His uninterrupted guidance and continuous help rather push to move forward greatly assisted me in developing the research skills and achieving the target.

I am grateful to **Professor Dr. Samia Habib Mansour**, Polymers & Pigments Dept., National Research Center, who has been a constant source of inspiration for me.

Sincere thanks are extended to the staff of High Voltage Laboratory, electrical engineering department and National Research Center, Polymers & Pigments Dept. where most of the samples preparation and experimental work was carried out.

Finally, but most important, I thank God almighty again on all things in my life

ABSTRACT

High voltage power transmission lines have acquired considerable prominence in the recent times. It has become essential to design and develop compact cost-effective and reliable insulation structures

Traditionally, line insulators have been produced using high quality glazed porcelain and pre-stressed or toughened glass. Extensive research and service experience has shown that these materials are very reliable and cost effective for a majority of outdoor applications. However, since early sixties, alternative materials namely polymers have emerged and presently are being used extensively for a variety of outdoor insulator applications because of their lightweight, high mechanical strength, less cost, reliability and superior contamination performance.

Water droplets on a polymeric surface may cause corona under the influence of an electric field and can cause deterioration to the insulation surface even in conditions of a low pollution level. The droplets increase locally the applied electric field. Local field intensifications lead to partial discharges (PD) and/or localized arcs, which may render possibly dry bands on the polymeric surface. Local arcing will eventually bridge the dry bands and a complete flashover will finally ensue.

This study investigates the influence of various parameters on the behavior of water droplets on PVC/EPDM composite material surface under electric fields. Parameters, such as polymer content, water droplet conductivity, droplet volume, and number of droplets were studied. The flashover voltage is affected by all aforementioned parameters.

Results showed that PVC material without any additions gives the best electrical performance with respect to blends of PVC / EPDM and EPDM only, increased conductivity, number of droplets and increased droplet volume cause a reduction of the flashover voltage.

TABLE OF CONTENTS

Statement	i	
Acknowledgement		
Abstract	iii	
Table of Contents	V	
List of Abbreviations	ix	
List of Tables	xi	
List of Figures	xiii	
1. INTRODUCTION		
1.1 Preface	1	
1.2 General concepts of polymers	4	
1.2.1 Benefits of polymers	4	
1.2.2 Types of polymers	5	
1.2.2.1 Epoxy	5	
1.2.2.2 Ethylene Propylene Rubber (EPR)	5	
1.2.2.3 Silicone Rubber (SR)	6	
1.2.2.4 EPDM/PVC Blend	6	
1.2.3 Composite insulators	7	
1.3 Hydrophobicity of the composite insulators	8	
1.4 Objective of the research	11	
2. LITERATURE REVIEW AND DATA COLLECTION	ON	
2.1 Electrical works done by others	12	
2.1.1 General properties of polymers	12	
2.1.2 Hydrophobicity	22	

	2.1.3	Effect	t of water droplets on polymeric s	urfaces
		under	the influence of electric fields	27
3. PR	EPAF	RATIO	ON OF EPDM/PVC COMPOSIT	TIES AND
LA	BORA	ATOR	Y TESTS	
3.1	Ge	neral		29
3.2	Ma	terials		29
3.3	Pre	paratio	on of EPDM/PVC composites	30
	3.3.1	Mater	rials	30
	3.3.2	Prepa	ration of PVC/EPDM Blends	30
3.4	Testir	ng Con	ditions	32
3.5	Ele	ctrical	test	33
	3.5.1	Testi	ng apparatus	33
	3.5.2	Test p	procedure	35
4. PR	EILI	MINA	RY TESTS ON EPDM/PVC CO)MPOSITE
MA	TER	IALS		
4.1	Ge	neral		36
4.2	Fla	shover	Voltage of Composite Insulators	under
	dif	ferent (Conditions	36
	4.2.1	Case	1: Effect of polymer content in th	e composite
		san	nples	38
	4	.2.1.1	Case 1 at different conductivities	s, constant
			droplet volumes and constant nu	ımber of
			droplets	39

4.2.1.	2 Case 1 at different droplet volumes, cons	tant
	water conductivity and constant number	of
	droplets	42
4.2.1.	3 Case 1 at different number of droplets,	
	constant water conductivity and constant	
	droplet volumes	45
4.2.2 Cas	e 2: Effect of Water conductivity in the	
c	omposite samples	47
4.2.2.1	Case 2 at different polymer content, consta	nt
	droplet volumes and constant number of	
	droplets	47
4.2.2.2	Case 2 at different droplet volumes, consta	nt
	polymer content and constant number of	
	droplets	49
4.2.2.3	Case 2 at different number of droplets,	
	constant polymer content and constant drop	olet
	volumes	52
4.2.3 Cas	e 3: Effect of water droplet volume on the	
\mathbf{f}	lashover voltage	54
4.2.3.1	Case 3 at different polymer content, consta	nt
	water conductivity and constant number of	
	droplets	55
4.2.3.2	Case 3 at different water conductivity,	
	constant polymer content and constant num	ıber
	of droplets	58

	4.2.3.3	Case 3 at different number of droplets,	
		constant polymer content and constant water	r
		conductivity	60
4	.2.4 Cas	e 4: Effect of number of droplets on the	
	e]	lectrical behavior of the composite material	62
	4.2.4.1	Case 4 at different polymer content, constant	nt
		water conductivity and constant droplet	
		volume	62
	4.2.4.2	Case 4 at different water conductivity,	
		constant polymer content and constant drop	let
		volume	64
	4.2.4.3	Case 4 at different droplet volumes, constar	ıt
		polymer content and constant water	
		conductivity	66
4.3 S	Summary (of results.	68
4.4 H	ydrophob	picity measurement.	71
5.Execu	utive Sun	nmary and Conclusion	
5.1	Executiv	ve Summary and Conclusion	73
5.2	Contribu	ution of the research work	75
5.3	Scope for	or future work	76
REFEI	RENCES		77

LIST OF ABBREVIATIONS

PD : Partial Discharges

EPDM: Ethylene Propylene Diene Monomer

EPR : Ethylene Propylene Rubber

UV : Ultra Violet

SR : Silicone Rubber

PVC : Polyvinyl Chloride

CFO: Critical Flashover

EPM: Ethylene Propylene Monomer

DSC: Differential Scanning Calorimetry

TGA: Thermogravimetrical Analysis

ETFE: Ethylene-Tetrafluorethylene

PPNCE: Plasticized Polymer nanocomposite electrolytes

XRD : X-Ray Diffraction

SEM : Scanning Electron Microscope

Tg: Glass Transition Temperature

DBS: Dielectric Breakdown Strength

IEC: International Electrotechnical Commission

LMW : low-molecular-weight

ASTM: American Standard Test Method

TPE: Thermoplastic Elastomer

DCPD: Dicyclopentadiene

ENB : Ethylidene norbornene

VNB : Vinyl Norbornene

kVA : Kilo Volt-Ampere

IEEE: Institute of Electrical and Electronics Engineers

NaCl: Sodium Chloride

DOP: Dioctyl Phthalate

LIST OF TABLES

- 3.1: The materials used and the formulation of the mixes.
- 4.1 Flashover voltage at different polymer content and different water conductivity at const. droplet volume and number of droplet.
- 4.2 Flashover voltage at different polymer content and different droplet volumes at const. water conductivity and number of droplets.
- 4.3 Flashover voltage at different polymer content and different number of droplets at const. water conductivity and const. droplet volumes.

 45
- 4.4 Flashover voltage at different water conductivity and different polymer content at constant droplet volumes and number of droplets.
- 4.5 Flashover voltage at different water conductivity and different droplet volumes at constant polymer content (PVC samples) and number of droplets.
- 4.6 Flashover voltage at different water conductivity and different number of droplets at constant polymer content (EPDM samples) and droplet volume.
- 4.7 Flashover voltage at different droplet volumes and different composite materials at constant water conductivity and number of droplets.

 55
- 4.8 Flashover voltage at different droplet volumes and different water conductivity at constant polymer content (75% PVC -25% EPDM samples) and number of droplets.

- 4.9 Flashover voltage at different number of droplets and different droplet volumes at constant polymer content (EPDM samples) and water conductivity.
- 4.10 Flashover voltage at different water conductivity and different number of droplets at constant polymer content (EPDM samples) and droplet volume.
- 4.11 Flashover voltage at different water conductivity and different number of droplets at constant polymer content (50% PVC 50% EPDM samples) and droplet volume.
- 4.12 Flashover voltage at different droplet volumes and different number of droplets at constant polymer content (PVC samples) and water conductivity.
- 4.13 Flashover voltage at different conditions of polymer content, water conductivity, water droplet volume and number of droplets

LIST OF FIGURES

1.1 Naturally contaminated silicone rubber insulator	3
1.2 The shape of a liquid droplet on a (A) Hydrophilic surface and (B) Hydrophobic surface	ee 8
3.1 Droplets arrangements (1, 3 and 5 droplets).	32
3.2 A) Top view and (B) cross section of the electrodes used dimensions in mm).	(all 33
4.1 Samples with different polymer content	38
4.2 Flashover voltage (kV) against Polymer content at different water conductivities	ent 40
4.3 Flashover voltage (kV) against Polymer content at differed droplet volumes	ent 43
4.4 Flashover voltage (kV) against Polymer content at different number of droplets	ent 46
4.5 Flashover voltage (kV) against water conductivity (µS/cr at different polymer contents	n) 48
4.6 Flashover voltage (kV) against water conductivity (μS/cr at different droplets volume.	n) 50
4.7 Flashover voltage (kV) against water conductivity (μS/cr at different number of droplets.	m) 53
4.8 Different volumes for water droplets.	54
4.9 Flashover voltage (kV) against droplet volume (ml) at different polymer contents.	56

4.10 Flashover voltage (kV) against droplet volume (ml) at different water conductivities.	59
4.11 Flashover voltage (kV) against droplet volume (ml) at number of droplets.	61
4.12 Flashover voltage (kV) against number of droplets at different polymer contents.	63
4.13 Flashover voltage (kV) against number of droplets at different water conductivities.	65
4.14 Flashover voltage (kV) against number of droplets at different droplet volumes.	67
4.15: Typical examples of surfaces with HC from 1 to 6	71