EVALUATING THE ROLE OF POSTERIOR APPROACH IN THE MANAGEMENT OF CERVICAL SPONDYLOTIC MYELOPATHY

Thesis

Submitted for Partial Fulfillment of the Requirement for the M.D. Degree in **Neurosurgery**

By

Mohamed Ahmed Hewedy

(M.B., B.Ch. M.Sc. General Surgery)

Supervisors

Prof. Dr. AMR SAFWAT

Professor of Neurosurgery Faculty of Medicine, Cairo University

Prof. Dr. NASSER EL GHANDOOR

Professor of Neurosurgery Faculty of Medicine, Cairo University

Prof. Dr. MOHAMED BADRAN

Professor of Neurosurgery Faculty of Medicine, Cairo University

FACULTY OF MEDICINE CAIRO UNIVERSITY

2009

(:)

ACKNOWLEDGEMENT

I would like to express my thanks and feeling of gratitude to Prof. Dr. AMR SAFWAT, Professor of Neurosurgery, Faculty of Medicine, Cairo University, for his kind support, tremendous understanding and valuable supervise during preparing this subject.

My deep sincere thanks and appreciation goes to Prof. Dr. NASSER EL GHANDOOR, Professor of Neurosurgery, Faculty of Medicine, Cairo University, for his constructive ideas, valuable comments, intensive efforts and guidance, without which this thesis would have never seen the light.

I'm profoundly grateful to Prof. Dr. MOHAMED BADRAN, Professor of Neurosurgery, Faculty of Medicine, Cairo University, for his great help and assistance, valuable time he's given me and his endless support.

I would like to express my great thanks to Prof. Dr. MOHAMED LOTFY, Professor of Neurosurgery, Faculty of Medicine, Cairo University, for his great support, valuable comments and supervision, to whom words could never be enough to say thank you.

I cannot also forget the kind, great help and valuable cooperation of my senior and junior colleagues in the Neurosurgery Department of Faculty of Medicine, Cairo University.

Last but not least, I would like to express my love sincere appreciation to my family and friends through this work.

ABSTRACT

Although cervical spondylotic myelopathy (CSM) is one of the most common spinal disorders, its natural history, path physiology, and optimal treatment are controversial. Cord compression is well recognized in association with CSM, but dynamic factors have increasingly been studied. Cervical laminectomy relieves cord compression but does not address these dynamic forces and may have a deleterious effect on long-term outcome if it leads to kyphosis or instability. Cervical laminectomy with fixation has been evaluated in a few studies; this prospective study was conducted to evaluate the risks, clinical characteristics, and functional and radiographic outcomes for a select group of patients with CSM who underwent cervical laminectomies alone or with posterior lateral mass fixation.

Key wards:

Cervical, Laminectomy, Myelopathy, Lateral mass, Fixation.

I Dedicate

This work

To my beloved ones

My Family

&

My Friends

List of Figures

Fig.	Title	Page
1-1	Vertebral development from blastemal to cartilaginous stages	
		6
1-2	Showing development of cervical vertebra	8
1-3	Vertebral development from blastemal, cartilaginous to	
	ossification stages	9
2-1,	Showing anatomy of typical cervical vertebra	
2-2		12
2-3	Shows the anatomy of the lateral mass of cervical spine	18
2-4	The muscles of the back of the neck	28
2-5	The muscles of the front of the neck. The sternomastoid has	
	been removed on the right side	29
2-6	The anterior and lateral vertebral muscles of the neck. The	
	scalenous anterior and longus capitis have been removed on	
	the right side	30
2-7	Parts of the vertebral artery	32
2-8	Blood supply to the vertebral column	33
3-1	The coupling patterns of the spine change from the cervical	
	to the lumbar region	37
3-2	Shows the abnormal translation abnormal angles	43
4-1	Intervertebral disc	53
5-1	The important sensory and motor areas in the cervical spinal	
	cord and the myelopathies	67
6-1	Plain x-ray of the cervical spine in flexion and extension	
	showing instability at C5/6	75
6-2	MRI of cervical spine sagital view showing multiple cervical	
	disc herniation and cord signal	79
6-3	MRI of cervical spine sagital view showing multiple cervical	
	disc herniation and cord signal	80
6-4	MRI of cervical spine sagital view showing multiple cervical	
	disc herniation and cord signal	80
6-5	MRI of cervical spine axial view showing cervical disc	
	herniation	81
7-1	Prone position	95
7-2	Skin incision and muscle dissection	95
7-3	Muscle retraction	96
7-4	Plate configuration	97

Fig.	Title	Page
7-5	Screw angulations at the plate	97
7-6	Plate/screw interface	98
7-7	Entry site for the screws	98
7-8	The different techniques for applying the screws	99
7-9	Taping of screws	100
7-10	Showing the relation between the plat, the screws and both	
	(vascular and neural structure)	102
7-11	Showing technique of laminoplasty	104
8-1	Operative photo showing prone position and skin incision	109
8-2	Operative photos showing muscle separation and	
	laminectomy	110
8-3	Operative photos showing lateral mass fixation before	
	laminectomy	111
8-4	Operative photos showing lateral mass fixation and	
	laminectomy	111
8-5	Showing axis fixation system	113
8-6	Showing sex distribution in 40 cases with CSM	115
8-7	Showing age group distribution in 40 cases with CSM	126
8-8	Showing the presenting symptoms in 40 cases with CSM	127
8-9	Showing the clinical signs in 40 cases with CSM	128
8-10	Showing the radiological findings in 40 cases with CSM	130
8-11	Showing G2 outcome	133
8-12	Showing G3 outcome	134
8-13	Showing G4 outcome	135

List of Tables

Table	Title	Page
2-1	Mean distance from the uncinate process to the VA	19
7-1	Indications for posterior lateral mass fixation	93
7-2	Contraindications to posterior lateral mass stabilization	94
7-3	Functions of the fixation systems when applied to the	
	posterior cervical spine	101
8-1	The Medical Research Council (MRC) grading system for	
	muscle strength	107
8-2	Nurick's Classification of Disability in Spondylotic	
	Myelopathy	108
8-3	Showing sex distribution in 40 cases with CSM	125
8-4	Showing age group distribution in 40 cases with CSM	126
8-5	Showing the presenting symptoms in 40 cases with CSM	127
8-6	Showing the clinical signs in 40 cases with CSM	128
8-7	Nurick's Classification of Disability in Spondylotic	
	Myelopathy	129
8-8	Showing the radiological findings in 40 cases with CSM	129
8-9	Showing the operative procedures in 40 cases with CSM	131
8-10	Showing symptoms post-operatively	131
8-11	Showing pre and post-operative Nurick's myelopathy grade	
	in 40 cases with CSM	132
8-12	Showing postoperative results in 40 cases with CSM	133

List of Abbreviations

ACD	: Anterior cervical discectomy
ACDF	: Anterior cervical discectomy with fusion
ALL	: Anterior longitudinal ligaments
AREZ	: Anterior root entry zone
C1	: 1 st cervical vertebra (atlas)
CSM	: Cervical spondylotic myelopathy
CT	: Computed tomography
JOP	: Japanese orthopedic association score
LCM	: Longus colli muscle
MEPs	: Motor evoked potentials
MRI	: Magnetic resonance imaging
PLL	: Posterior longitudinal ligament
SSEPs	: Somato-sensory evoked potentials
T1	: 1 st thoracic vertebra
UP	: Uncinate process
Va	: Vertebral artery
VB	: Vertebral body

Contents

	Page	
Acknowledgement		
Abstract		
List of Figures		
List of Tables		
List of Abbreviations		
INTRODUCTION AND AIM OF THE WORK		
REVIEW OF LITERATURE		
o Embryology	5	
o Surgical Anatomy	11	
o Biomechanics of the Spine	36	
 Pathophysiology of Cervical Disc Myelopathy 	50	
 Clinical Features of Cervical Disc Myelopathy 	63	
o Investigations	73	
 Treatment of Cervical Disc Diseases 	83	
PATIENTS AND METHODS		
RESULTS		
CASE PRESENTATION	136	
DISCUSSION		
SUMMARY AND CONCLUSION		
REFERENCES		
ARABIC SUMMARY		

INTRODUCTION

INTRODUCTION

Since the first successful cervical laminectomy was performed by Sir Victor Horsley, dorsal decompression of the cervical spine has become a standard approach in the treatment of cervical spondylotic myelopathy (CSM) secondary to congenital or acquired spinal canal stenosis. Such a dorsal approach can be performed with relative ease and safety and provides free access to the spinal canal, the foramina, the lateral disc space, and the intradural contents (**Collias and Roberts,2000**).

The modern paradigm for managing CSM uses both ventral and dorsal approaches, with ventral procedures being more common. The ventral procedures consist primarily of discectomy, with or without vertebrectomy, followed by fusion, but it is more technically demanding when addressing multilevel disease, and carries the risk of accelerated juxtafusion degeneration (**Epstein, 2003**).

The symptoms and syndromes of (CSM) can be closely mimicked by a number of other neurological disorders, including amyotrophic lateral sclerosis, multiple sclerosis, and syringomyelia, and diagnostic evaluations must keep this differential in mind patient history, detailed neurological examination, and radiographic imaging are the primary basis of diagnosis in CSM cervical magnetic resonance imaging scanning is currently the imaging modality of choice, although computed tomography scanning with or without myelography remains useful for better delineation of bony anatomy plain films with dynamic views are valuable adjuncts in the evaluation of spinal geometry and segmental instability (James, 2007).

Management choices include conservative and surgical approaches. In patients with mild, static disease or who are poor surgical candidates, a trial of conservative management with rigid collar immobilization, physical therapy regarding the natural history of the disease, in patients with moderate-to-severe myelopathy or with progressive myelopathy, surgical management is appropriate (**Boyce and Wang, 2003**).

Aim of the work

The aim of this work is to review the up-to-date literature concerning the subject of the posterior approach in the treatment of cervical spondylotic myelopathy. An idea will be given about the anatomy and biomechanics of cervical spine and the pathogenesis of cervical myelopathy. Much details will be on the management of this disease, concentrating upon the up-to-date diagnostic procedure and the different techniques of the posterior approach to cervical spine, we will compare our results to the published results of posterior approach, also we will compare the result of posterior approach to those of the anterior approach to evaluate the effectiveness of posterior approach in treating cervical spondylotic myelopathy.

REVIEW OF LITERATURE

CHAPTER 1

EMBRYOLOGY OF CERVICAL SPINE

The skeleton is a derivative of mesoderm including not only its axial and appendicular divisions but also all accessory bones. Most of these parts enter a blastemal stage of mesenchymal condensation and this transforms into a cartilaginous stage before becoming ossified.

The skeletal axis:

Before reaching its final condition the skeletal axis passes through three preliminary stages:

In the first stage it is formed by the non-segmental notochord. The notochord is derived from the endoderm and consists of a rod of cells which lies on the ventral aspect of the neural tube; it constitutes the foundation of the axial skeleton, since around it the segments of the vertebral column are formed. It extends throughout the entire length of the future vertebral column and reaches as far as the region of future dorsum sellae of the sphenoid bone at the anterior end of mid-brain (Ordahl, 1993).

In the second stage the notochord provides a framework around which a blastemal of mesenchymatous vertebral column is formed. The paraxial mesoderm is subdivided into a number of more or less cubical segments; the primitive segments (Epithelial Somites) (Fig. 1-1). These are separated from one another by inter segmental septa and to every segment a spinal nerve is distributed.