

## دراسات عن الخواص الوظيفيه والكيموحيويه لبروتينات لبن الابل

مقدمة من

اسلام سيد العربى عبد القادر سليمان

رسالة علمية مقدمة استيفاءً لمتطلبات منح درجة

الماجستير في العلوم الزراعية (تخصص تكنولوجيا الألبان) قسم علوم الأغذية

من

جامعة الإسكندرية



# STUDIES ON FUNCTIONAL AND BIOCHEMICAL PROPERTIES OF CAMEL MILK PROTEINS

BY

#### ISLAM SAYED EL-ARABY ABD EL-KADER SOLIMAN

A Thesis Submitted in Partial Fulfillment of the Requirements Governing the Award of the Degree of

# MASTER IN AGRICULTURAL SCIENCES (DAIRY TECHNOLOGY)

**Department of Food Sciences** 

From

**Alexandria University** 

### **CONTENTS**

|                                                                        | Page No |
|------------------------------------------------------------------------|---------|
| CHAPTER 1: INTRODUCTION                                                | 1       |
| CHAPTER 2: REVIEW OF LITRATURE                                         | 2       |
| 2.1. Chemical composition of camel and cow milk proteins               | 2       |
| 2.2. Functional properties of casein, casein co-precipitate and whey   |         |
| proteins                                                               | 7       |
| 2.2.1. Solubility                                                      | 9       |
| 2.2.2. Emulsifying properties                                          | 14      |
| 2.2.3. Viscosity                                                       | 16      |
| 2.2.4. Foaming properties                                              | 18      |
| 2.3. Enzymatic treatment of camel and cow protein                      | 21      |
| 2.4. Polyacrylamide gel electrophoresis of proteins                    | 21      |
| 2.5. Application of casein, co-precipitate and whey proteins           | 22      |
| CHAPTER 3: MATERIALS AND METHODS                                       | 24      |
| 3.1. Materials                                                         | 24      |
| 3.1.1. Milk                                                            | 24      |
| 3.1.2. Calf rennet                                                     | 24      |
| 3.1.3. Trypsin                                                         | 24      |
| 3.2. Methods                                                           | 24      |
| 3.2.1. Preparation of casein                                           | 24      |
| 3.2.2. Preparation of casein co-precipitate                            | 24      |
| 3.2.3. Preparation of rennet whey                                      | 24      |
| 3.2.4. Preparation of whey proteins                                    | 24      |
| 3.2.5. Preparation of protein solutions                                | 25      |
| 3.2.6. Determination of solubility                                     | 25      |
| 3.2.7. Determination of viscosity                                      | 25      |
| 3.2.8. Emulsifying capacity (EC)                                       | 25      |
| 3.2.9. Foaming properties                                              | 25      |
| 3.2.10. Tryptic hydrolysis of casein, co-precipitate and whey proteins | 26      |
| 3.2.11. Polyacrylamide gel electrophoresis                             | 26      |
| 3.2.11.1. Preparation of samples                                       | 26      |
| 3.2.11.2. Preparation of stock solution                                | 26      |
| 3.2.11.3. Preparation of electrophoresis buffers                       | 26      |
| 3.2.11.4. Preparation of slab gels                                     | 27      |
| 3.2.11.5. Loading of samples and electrophoresis                       | 27      |
| 3.2.11.6. Protein staining                                             | 27      |
| 3.2.12. Chemical analysis of casein, co-precipitate and whey proteins  | 27      |
| 3.2.12.1. Protein                                                      | 27      |
| 3.2.12.2. Total Protein                                                | 27      |
| 3.2.12.3. Ash contents                                                 | 27      |
| 3.2.13. Statistical analysis                                           | 27      |
| CHAPTER 4: RESULTS AND DISCUSSION                                      | 28      |
| 4.1. Chemical composition of camel and cow milk proteins               | 28      |
| 4.2. Functional properties of casein, co-precipitate and whey proteins | 28      |

| 4.2.1. Solubility                                                      | 28  |
|------------------------------------------------------------------------|-----|
| 4.2.2. Emulsifying capacity                                            | 38  |
| 4.2.3. Viscosity properties                                            | 48  |
| 4.2.4. Foaming properties                                              | 57  |
| 4.3. The effect of modification of prepared protein from camel and cow |     |
| milk by trypsin treatment on their functional properties               | 79  |
| 4.3.1. Effect of trypsin treatment for different times on foaming      |     |
| capacity                                                               | 80  |
| 4.3.2. Effect of trypsin treatment for different times on foaming      |     |
| stability                                                              | 80  |
| 4.3.3. The effect of modification of prepared protein from camel and   |     |
| cow milk by trypsin treatment on their functional properties           | 88  |
| 4.4. Polyacrylamide gel electrophoresis (PAGE) of protein              | 93  |
| CHAPTER 5: SUMMARY AND CONCLUSION                                      | 104 |
| CHAPTER 6: REFERENCES                                                  | 106 |
| CHAPTER 7: ARABIC SUMMARY                                              |     |

### LIST OF TABLES

| Table No. | <u>Title</u>                                                                     | Page No.   |
|-----------|----------------------------------------------------------------------------------|------------|
| 1         | Chemical composition of HCl-casein, casein co-                                   |            |
|           | precipitate and whey proteins prepared from camel                                |            |
|           | and cow milks                                                                    | 29         |
| 2a, b     | Effect of pH and protein concentration on the                                    |            |
|           | solubility of HCl-casein, casein co-precipitates and                             |            |
|           | whey proteins prepared from camel and cow milks                                  | 30         |
| 3a, b     | Effect of pH and protein concentration on the                                    |            |
|           | emulsifying capacity (EC) of HCl-casein, whey                                    |            |
|           | proteins and Casein co-precipitates prepared from                                |            |
|           | camel and cow milks                                                              | 39         |
| 4a, b     | The effect of pH and protein concentration on the                                |            |
|           | viscosity of HCl-casein, whey proteins and Casein                                |            |
|           | co-precipitates prepared from camel and cow milks.                               | 49         |
| 5         | Effect of pH and protein concentration on the                                    |            |
|           | foaming capacity (FC) of HCl-casein prepared from                                | <b>~</b> 0 |
| _         | camel and cow milks                                                              | 58         |
| 6         | Effect of pH and protein concentration on the                                    |            |
|           | foaming stability (FS) of HCl-casein prepared from                               | 62         |
| 7         | camel and cow milks                                                              | 63         |
| 7         | Effect of pH and protein concentration on the                                    |            |
|           | foaming capacity (FC) of casein co-precipitates                                  | 66         |
| 8         | prepared from camel and cow milks  Effect of pH and protein concentration on the | 00         |
| o         | foaming stability (FS) of casein co-precipitates                                 |            |
|           | prepared from camel and cow milks                                                | 70         |
| 9         | Effect of pH and protein concentration on the                                    | 70         |
|           | foaming capacity (FC) of whey proteins prepared                                  |            |
|           | from camel and cow milks                                                         | 73         |
| 10        | Effect of pH and protein concentration on the                                    | 75         |
| 10        | foaming stability (FS) of whey proteins prepared                                 |            |
|           | from camel and cow milks                                                         | 77         |
| 11        | The effect of trypsin treatment for different times                              |            |
|           | on foaming capacity of camel and cow milk HCl-                                   |            |
|           | casein                                                                           | 81         |
| 12        | The effect of trypsin treatment for different times                              |            |
|           | on foaming capacity of camel and cow milk whey                                   |            |
|           | proteins                                                                         | 82         |
| 13        | The effect of trypsin treatment for different times                              |            |
|           | on foaming capacity of camel and cow milk casein                                 |            |
|           | co-precipitate                                                                   | 83         |
| 14        | The effect of trypsin treatment for different times                              |            |
|           | on foaming stability (FS) of camel and cow milk                                  |            |
|           | HCl-casein                                                                       | 86         |

| The effect of trypsin treatment for different times |                                                               |
|-----------------------------------------------------|---------------------------------------------------------------|
| on foaming stability (FS) of camel and cow milk     |                                                               |
| whey proteins                                       | 87                                                            |
| The effect of trypsin treatment for different times |                                                               |
| on foaming stability (FS) of camel and cow milk     |                                                               |
| casein co-precipitate                               | 89                                                            |
| The effect of modification of prepared protein from |                                                               |
| camel and cow milk by trypsin treatment on          |                                                               |
| solubility properties                               | 90                                                            |
| The effect of modification of prepared protein from |                                                               |
| camel and cow milk by trypsin treatment on          |                                                               |
| viscosity properties                                | 94                                                            |
| The effect of modification of prepared protein from |                                                               |
| camel and cow milk by trypsin treatment on          |                                                               |
| emulsifying properties                              | 97                                                            |
|                                                     | on foaming stability (FS) of camel and cow milk whey proteins |

#### LIST OF FIGURES

| Fig. No. | <u>Title</u>                                                                                       | Page No    |
|----------|----------------------------------------------------------------------------------------------------|------------|
| 1        | Effect of pH and protein concentration on the solubility of HCl-casein, casein co-precipitates and |            |
|          | whey proteins prepared from camel and cow milks                                                    | 36         |
| 2        | Effect of pH and protein concentration on the                                                      | 30         |
| 2        | emulsifying capacity (EC) of HCl-casein, casein co-                                                |            |
|          | precipitates and whey proteins prepared from camel                                                 |            |
|          | and cow milks                                                                                      | 45         |
| 3        | Effect of pH and protein concentration on the                                                      | 43         |
| 3        | viscosity of HCl-casein, casein co-precipitates and                                                |            |
|          | whey proteins prepared from camel and cow milks                                                    | 55         |
| 4        | Effect of pH and protein concentration on the                                                      | 33         |
| 4        | *                                                                                                  |            |
|          | foaming capacity (FC) of HCl-casein prepared from                                                  | 60         |
| <b>E</b> | camel and cow milks                                                                                | 00         |
| 5        | Effect of pH and protein concentration on the                                                      |            |
|          | foaming capacity (FC) of casein co-precipitate                                                     | <b>6</b> 0 |
|          | prepared from camel and cow milks                                                                  | 68         |
| 6        | Effect of pH and protein concentration on the                                                      |            |
|          | foaming capacity (FC) of whey proteins prepared                                                    | 7.5        |
| 7        | from camel and cow milks                                                                           | 75         |
| 7        | Effect of enzymatic treatment on the foaming                                                       |            |
|          | capacity (FC) of HCl casein, casein co-precipitate                                                 |            |
|          | and whey proteins prepared from camel and cow                                                      | 0.4        |
|          | milks                                                                                              | 84         |
| 8        | Effect of enzymatic treatment of HCl-casein, casein                                                |            |
|          | co precipitate and whey proteins prepared from                                                     |            |
|          | camel and cow milks on the solubility                                                              | 91         |
| 9        | Effect of enzymatic treatment of HCl-casein, casein                                                |            |
|          | co-precipitate and whey proteins prepared from                                                     |            |
|          | camel and cow milks on viscosity properties                                                        | 95         |
| 10       | The effect of modification of prepared protein from                                                |            |
|          | camel and cow milk by trypsin treatment on                                                         |            |
|          | emulsifying properties                                                                             | 98         |
| 11a, b   | Urea-PAGE profile of camel and bovine caseins                                                      |            |
|          | and casein co-precipitates                                                                         | 100        |
| 12       | Alkaline native-PAGE of camel, cow and human                                                       |            |
|          | whey proteins                                                                                      | 103        |

#### LIST OF ABBREVIATIONS

**KDa:** Kilo Dalton

**SDS-PAGE:** Sodium dodecyl sulphate polyacrylamide gel electrophoresis

PSI: The protein solubility index
PDI: The protein dispersibility index,
(CMWP) Camel milk whey proteins

(CMCCP) Camel milk casein co-precipitate

**(FVS)** Foam volume stability

**FS:** Foam stability **FC:** Foam capacity

EC: Emulsifying Capacity CMP: Caseinomacropeptide

CMR: CM separated from powdered from commercial milk by microfiltration/

diafiltration

pI: Iso electric pointCp: Centipoise

WAC: water absorption capacity
WPC: whey proteins concentrate
MPC: Milk protein concentrate
DH: Degree of hydration

NA-CN: Sodium Caseinate
(ESI) Emulsion stability index
(EAI) Emulsion activity index

Table (5a): Effect of pH and protein concentration on the foaming capacity (FC) of HCl-casein prepared from camel and cow milks.

|       | Casein concn |                          | pH 7.0     |             |                          | pH 7.5     |             |                          | pH 8.0          |             |
|-------|--------------|--------------------------|------------|-------------|--------------------------|------------|-------------|--------------------------|-----------------|-------------|
| milk  | (%)          | Total volume             | FC%        | FE%         | Total volume             | FC%        | FE%         | Total volume             | Volume increase | FE%         |
| Camel | 0.25         | 251.00±1.53 a            | 25.50±0.76 | 125.50±0.76 | 245.33±1.45 a            | 22.67±0.73 | 122.67±0.73 | 254.67±1.45 a            | 27.33±0.73      | 127.33±0.73 |
|       | 0.50         | 264.67±2.03 <sup>b</sup> | 32.33±1.01 | 132.17±1.01 | 274.67±2.60 <sup>b</sup> | 37.33±1.30 | 137.33±1.30 | 284.00±0.58 <sup>b</sup> | 42.00±0.29      | 142.00±0.29 |
|       | 0.75         | 279.33±1.20°             | 39.67±0.60 | 139.67±0.60 | 285.33±0.88°             | 42.67±0.44 | 142.67±0.44 | 304.67±2.03°             | 52.33±1.01      | 152.33±1.01 |
|       | 1.00         | 296.00±2.08 d            | 48.00±1.04 | 148.00±1.04 | 294.00±1.53 <sup>d</sup> | 47.00±0.76 | 147.00±0.76 | 329.67±2.60 <sup>d</sup> | 64.83±1.30      | 164.83±1.30 |
|       | F-test       | 122.433**                |            |             | 149.765**                |            |             | 303.075**                |                 |             |
|       | Sig. (p)     | < 0.001                  |            |             | < 0.001                  |            |             | < 0.001                  |                 |             |
|       | 0.25         | 249.67±1.45 a            | 24.83±0.73 | 124.83±0.73 | 265.67±2.91 a            | 32.83±1.45 | 132.83±1.45 | 275.33±1.45 a            | 37.67±0.73      | 137.67±0.73 |
|       | 0.50         | 276.33±2.19 <sup>b</sup> | 38.17±1.09 | 138.17±1.09 | 285.33±2.03 <sup>b</sup> | 42.67±1.01 | 142.67±1.01 | 310.67±2.91 b            | 55.33±1.45      | 155.33±1.45 |
| Cow   | 0.75         | 290.33±1.45 °            | 45.17±0.73 | 145.17±0.73 | 293.67±1.86 °            | 46.83±0.93 | 146.83±0.93 | 314.67±1.45 <sup>b</sup> | 57.33±0.73      | 157.33±0.73 |
| Cow   | 1.00         | 301.67±2.19 <sup>d</sup> | 50.83±1.09 | 150.83±1.09 | 306.00±2.08 <sup>d</sup> | 53.00±1.04 | 153.00±1.04 | 334.67±2.60°             | 67.33±1.30      | 167.33±1.30 |
|       | F-test       | 146.011**                |            |             | 56.495**                 |            |             | 125.280**                |                 |             |
|       | Sig. (p)     | < 0.001                  |            |             | < 0.001                  |            |             | < 0.001                  |                 |             |
| t-    | test (p)     | 0.864 (0.397)            |            |             | 1.785 (0.088)            |            |             | 1.473 (0.155)            |                 |             |

F: F test (ANOVA) T-test: Student t-test

Table (5b): Effect of pH and protein concentration on the foaming capacity (FC) of HCl-casein prepared from camel and cow milks.

| Milk   | Casein       |      |                     | pH 7.0 |        |                     | pH 7.5 |        |                     | pH 8.0 |        | F-test   |
|--------|--------------|------|---------------------|--------|--------|---------------------|--------|--------|---------------------|--------|--------|----------|
| IVIIIK | concn<br>(%) |      | Total               | FC%    | FE%    | Total               | FC%    | FE%    | Total               | FC%    | FE%    | (p)      |
| Camel  | 0.25         | Mean | 251.00 a            | 25.50  | 125.50 | 245.33 b            | 22.67  | 122.67 | 254.67 a            | 27.33  | 127.33 | 10.118*  |
|        | 0.23         | ±SE  | 1.53                | 0.76   | 0.76   | 1.45                | 0.73   | 0.73   | 1.45                | 0.73   | 0.73   | (0.012)  |
|        | 0.50         | Mean | 264.67 a            | 32.33  | 132.17 | 274.67 <sup>b</sup> | 37.33  | 137.33 | 284.00°             | 42.00  | 142.00 | 24.990** |
|        | 0.30         | ±SE  | 2.03                | 1.01   | 1.01   | 2.60                | 1.30   | 1.30   | 0.58                | 0.29   | 0.29   | (0.001)  |
|        | 0.75         | Mean | 279.33 <sup>a</sup> | 39.67  | 139.67 | 285.33 <sup>b</sup> | 42.67  | 142.67 | 304.67 °            | 52.33  | 152.33 | 83.018** |
|        | 0.73         | ±SE  | 1.20                | 0.60   | 0.60   | 0.88                | 0.44   | 0.44   | 2.03                | 1.01   | 1.01   | (<0.001) |
|        | 1.00         | Mean | 296.00 a            | 48.00  | 148.00 | 294.00 a            | 47.00  | 147.00 | 329.67 <sup>b</sup> | 64.83  | 164.83 | 89.612** |
|        | 1.00         | ±SE  | 2.08                | 1.04   | 1.04   | 1.53                | 0.76   | 0.76   | 2.60                | 1.30   | 1.30   | (<0.001) |
|        | 0.25         | Mean | 249.67 a            | 24.83  | 124.83 | 265.67b             | 32.83  | 132.83 | 275.33c             | 37.67  | 137.67 | 39.798** |
|        | 0.23         | ±SE  | 1.45                | 0.73   | 0.73   | 2.91                | 1.45   | 1.45   | 1.45                | 0.73   | 0.73   | (<0.001) |
|        | 0.50         | Mean | 276.33 a            | 38.17  | 138.17 | 285.33b             | 42.67  | 142.67 | 310.67c             | 55.33  | 155.33 | 54.853** |
| Cow    | 0.30         | ±SE  | 2.19                | 1.09   | 1.09   | 2.03                | 1.01   | 1.01   | 2.91                | 1.45   | 1.45   | (<0.001) |
| Cow    | 0.75         | Mean | 290.33 a            | 45.17  | 145.17 | 293.67a             | 46.83  | 146.83 | 314.67b             | 57.33  | 157.33 | 68.101** |
|        | 0.73         | ±SE  | 1.45                | 0.73   | 0.73   | 1.86                | 0.93   | 0.93   | 1.45                | 0.73   | 0.73   | (<0.001) |
|        | 1.00         | Mean | 301.67 <sup>a</sup> | 50.83  | 150.83 | 306.00a             | 53.00  | 153.00 | 334.67b             | 67.33  | 167.33 | 60.720** |
|        | 1.00         | ±SE  | 2.19                | 1.09   | 1.09   | 2.08                | 1.04   | 1.04   | 2.60                | 1.30   | 1.30   | (<0.001) |

F: F test (ANOVA)

Different superscripts are significant: \* Significant at p  $\leq$ 0.05

\*\* Significant at p ≤0.01

a-b-c-d: Means the same columns with different subscriptions are significantly different (p ≤0.05

Table (6a): Effect of pH and protein concentration on the foaming stability (FS) of HCl-casein prepared from camel and cow milks.

|              |          |                 |             |                 | PH 7.0         | )              |                |                             |                 |                   |                      | PH 7.5             | 5               |         |                     |                 |       |        | PH 8.0         | )              |                |                     |
|--------------|----------|-----------------|-------------|-----------------|----------------|----------------|----------------|-----------------------------|-----------------|-------------------|----------------------|--------------------|-----------------|---------|---------------------|-----------------|-------|--------|----------------|----------------|----------------|---------------------|
| Concer<br>(% |          |                 |             |                 |                |                |                |                             | Volu            | me of             | foam (1              | ml) at 2           | 20°C af         | ter tim | e, min.             |                 |       |        |                |                |                |                     |
| ,            | ,        | 0               | 5           | 10              | 15             | 20             | 25             | 30                          | 0               | 5                 | 10                   | 15                 | 20              | 25      | 30                  | 0               | 5     | 10     | 15             | 20             | 25             | 30                  |
|              | 0.25     | 64.33           | 35.33       | 19.67           | 14.67          | 6.33           | 0.00           | 0.00 a                      | 85.67           | 66.00             | 39.67                | 24.00              | 14.67           | 5.33    | 0.00°               | 94.67           | 70.33 | 46.33  | 24.67          | 15.33          | 9.33           | 9.33 a              |
|              |          | ±1.20<br>95.67  | ±0.88 60.33 | ±2.60<br>45.67  | ±2.03<br>26.00 | ±1.86          | ±0.00<br>5.67  | ±0.00<br>0.00 a             | ±1.20<br>104.67 | ±2.08<br>84.67    | ±1.45<br>58.33       | $\pm 1.53$ $41.00$ | ±2.60<br>26.67  | ±1.45   | ±0.00 b             | ±1.45<br>119.33 |       | ±1.86  | ±2.60<br>40.33 | ±2.03<br>25.33 | ±1.20<br>25.33 | ±1.76<br>15.67 b    |
|              | 0.50     | ±1.76           |             | ±1.20           | $\pm 2.08$     | ±1.53          | ±2.33          | ±0.00                       | ±1.45           | ±2.03             | ±2.19                | ±2.08              | ±2.19           | ±2.08   | ±1.53               | ±2.91           | ±1.76 | ±1.86  | ±0.88          | ±1.45          | ±2.60          | ±1.20               |
| ıel          | 0.75     | 105.67          | 79.67       | 44.67           | 29.33          | 10.33          | 5.67           | 0.00 a                      | 124.00          | 95.33             | 80.33                | 54.00              | 34.67           | 21.00   | 9.67 <sup>b</sup>   | 156.00          |       | 96.00  | 119.33         |                | 35.33          | 29.33 °             |
| Camel        | 0.75     | ±1.20           |             | ±1.45           |                |                | ±1.76          | ±0.00                       | ±1.53           | ±2.03             | ±1.45                | ±2.08              | ±2.03           | ±1.53   | ±3.18               | ±2.08           |       |        |                | ±1.76          |                | ±1.20               |
| )            | 1.00     | 120.33          | 89.00       | 71.33           | 25.33          | 15.33          | 5.33           | 4.33 b                      |                 | 105.33            |                      | 65.67              | 49.33           | 34.67   | 19.67 °             |                 |       | 108.67 |                | 73.67          | 49.67          | 44.67 <sup>d</sup>  |
|              | 1.00     | $\pm 2.60$      | $\pm 2.65$  | $\pm 2.40$      | ±0.88          | ±2.03          | $\pm 0.88$     | ±1.20                       | ±1.76           | ±0.88             | ±1.53                | ±2.33              | ±2.33           | ±2.03   | ±0.88               | ±1.53           | ±2.03 | ±2.40  | $\pm 2.08$     | ±1.86          | ±1.45          | ±2.60               |
|              | F (p)    |                 |             |                 |                |                |                | 13.000**                    |                 |                   |                      |                    |                 |         | 20.583**            |                 |       |        |                |                |                | 76.994**            |
|              | 1 (p)    |                 |             |                 |                |                |                | (0.002)                     |                 |                   |                      |                    |                 |         | (<0.001)            |                 |       |        |                |                |                | (<0.001)            |
|              | 0.25     | 94.33           | 75.33       | 65.67           | 55.67          | 54.67          | 50.00          | 45.00 a                     | 114.67          |                   | 91.00                | 89.67              | 84.67           |         | 74.67 <sup>a</sup>  | 125.67          |       | 95.67  | 90.67          | 84.67          | 79.00          | 75.33 <sup>a</sup>  |
|              | 0.23     | ±1.20           |             | ±1.76           | ±2.33          |                | ±1.15          | ±2.31                       | ±2.03           | ±2.03             |                      | ±2.03              | ±3.18           |         | ±0.88               | ±1.20           |       |        |                | ±2.65          | ±2.08          | ±0.88               |
|              | 0.50     | 128.33          |             | 95.67           | 86.00          | 81.33          | 79.33          | 75.33 b                     | 130.33          | 109.00            |                      | 95.67              | 90.33           | 84.67   | 81.00 b             | 154.67          |       |        |                |                | 114.67         | 110.33 b            |
| >            |          | ±0.88<br>134.67 |             | ±1.20<br>105.67 | ±1.53          | ±2.96<br>91.00 | ±2.91<br>84.33 | ±3.18<br>80.67 <sup>b</sup> | ±2.03<br>146.00 | $\pm 2.08$ 130.00 | ±3.21                | ±1.76<br>118.67    | ±2.03<br>110.33 |         | ±1.53               | ±10.33          |       | ±2.33  |                | ±2.33          | ±2.03          | ±1.45<br>119.33 °   |
| Cow          | 0.75     | ±2.03           |             | ±2.33           | ±2.52          |                | ±2.33          | ±1.76                       | ±2.08           | ±2.31             | 126.00<br>$\pm 2.65$ | ±1.86              | ±1.45           |         | ±1.45               | ±3.21           | ±2.33 |        |                | ±2.08          |                | ±1.20               |
|              |          |                 |             |                 | 110.67         |                | 103.33         | 100.67°                     | 161.67          |                   |                      |                    |                 | 125.67  | 124.67 <sup>d</sup> | 205.67          |       | 176.00 |                |                |                | 160.67 <sup>d</sup> |
|              | 1.00     |                 |             | ±1.76           |                | ±1.20          |                | ±2.33                       |                 | ±1.76             |                      | ±2.03              | ±1.76           | 1       | ±2.03               | ±2.91           |       | ±1.53  |                |                | ±0.88          | ±1.76               |
|              | <b>.</b> |                 | · L         | <u> </u>        |                | L. L.          |                | 88.350**                    | <u> </u>        |                   | l .                  | l .                | l .             | u.      | 215.905**           |                 |       |        |                |                | u.             | 661.149**           |
|              | F (p)    |                 |             |                 |                |                |                | (<0.001)                    |                 |                   |                      |                    |                 |         | (<0.001)            |                 |       |        |                |                |                | (<0.001)            |
| + (          | n)       |                 |             |                 |                |                |                | 12.119**                    |                 |                   |                      |                    |                 |         | 13.622**            | ]               |       |        |                |                |                | 9.095**             |
| t (          | h)       |                 |             |                 |                |                |                | (<0.001)                    |                 |                   |                      |                    |                 |         | (<0.001)            |                 |       |        |                |                |                | (<0.001)            |

F: F test (ANOVA) T-test: Student t-test

Table (6b): Effect of pH and protein concentration on the foaming stability (FS) of HCl-casein prepared from camel and cow milks.

|       |                |                 |                 |                | PH 7.0          | )              |               |                             |                 |                 |                | PH 7.5         | i               |                |                          |                  |                     |                 | PH 8.0          | )               |                |                            |                       |
|-------|----------------|-----------------|-----------------|----------------|-----------------|----------------|---------------|-----------------------------|-----------------|-----------------|----------------|----------------|-----------------|----------------|--------------------------|------------------|---------------------|-----------------|-----------------|-----------------|----------------|----------------------------|-----------------------|
|       | ntration<br>%) |                 |                 |                |                 |                |               |                             | Volur           | ne of f         | oam (n         | nl) at 2       | 20°C af         | ter tim        | e, min.                  |                  |                     |                 |                 |                 |                |                            | F (p)                 |
|       |                | 0               | 5               | 10             | 15              | 20             | 25            | 30                          | 0               | 5               | 10             | 15             | 20              | 25             | 30                       | 0                | 5                   | 10              | 15              | 20              | 25             | 30                         |                       |
|       | 0.25           | 64.33<br>±1.20  | 35.33<br>±0.88  | 19.67<br>±2.60 | 14.67<br>±2.03  | 6.33<br>±1.86  | 0.00<br>±0.00 | 0.00 a<br>±0.00             | 85.67<br>±1.20  | 66.00<br>±2.08  | 39.67<br>±1.45 | 24.00<br>±1.53 | 14.67<br>±2.60  | 5.33<br>±1.45  | 0.00 a<br>±0.00          | 94.67<br>±1.45   | $70.33 \\ \pm 1.45$ | 46.33<br>±1.86  | 24.67<br>±2.60  | 15.33<br>±2.03  | 9.33<br>±1.20  | 9.33 <sup>b</sup><br>±1.76 | 28.000**<br>(0.001)   |
| Camel | 0.50           | 95.67<br>±1.76  | 60.33<br>±3.18  | 45.67<br>±1.20 | 26.00<br>±2.08  | 14.00<br>±1.53 | 5.67<br>±2.33 | 0.00 a<br>±0.00             | 104.67<br>±1.45 |                 | 58.33<br>±2.19 | 41.00<br>±2.08 |                 | 14.00<br>±2.08 | 6.00 b<br>±1.53          |                  | 89.33<br>±1.76      |                 | 40.33<br>±0.88  |                 | 25.33<br>±2.60 |                            | 49.618**<br>(<0.001)  |
| Car   | 0.75           | 105.67<br>±1.20 |                 | 44.67<br>±1.45 | 29.33<br>±2.91  | 10.33<br>±3.18 | 5.67<br>±1.76 | 0.00 a<br>±0.00             |                 | 95.33<br>±2.03  |                |                |                 | 21.00<br>±1.53 | 9.67 b<br>±3.18          |                  | 113.67<br>±1.86     | 96.00<br>±2.65  | 119.33<br>±1.20 | 44.33<br>±1.76  |                |                            | 58.010**<br>(<0.001)  |
|       | 1.00           | 120.33<br>±2.60 | 89.00<br>±2.65  | 71.33<br>±2.40 | 25.33<br>±0.88  | 15.33<br>±2.03 | 5.33<br>±0.88 | 4.33 a<br>±1.20             | 140.67<br>±1.76 | 105.33<br>±0.88 | 84.00<br>±1.53 | 65.67<br>±2.33 | 49.33<br>±2.33  | 34.67<br>±2.03 | 19.67 b<br>±0.88         | 184.00<br>±1.53  | 150.33<br>±2.03     | 108.67<br>±2.40 | 91.00<br>±2.08  |                 | 49.67<br>±1.45 | 44.67 °<br>±2.60           | 138.160**<br>(<0.001) |
|       | 0.25           | 94.33<br>±1.20  | 75.33<br>±0.88  | 65.67<br>±1.76 | 55.67<br>±2.33  | 54.67<br>±2.60 |               | 45.00 a<br>±2.31            | 114.67<br>±2.03 | 95.33<br>±2.03  |                |                |                 | 80.67<br>±1.20 | 74.67 b<br>±0.88         |                  | 95.33<br>±2.33      | 95.67<br>±1.76  | 90.67<br>±2.91  |                 | 79.00<br>±2.08 |                            | 130.694**<br>(<0.001) |
| Cow   | 0.50           |                 |                 |                |                 | 81.33<br>±2.96 |               | 75.33 a ±3.18               | 130.33<br>±2.03 | 109.00<br>±2.08 |                | 95.67<br>±1.76 |                 | 84.67<br>±0.88 | 81.00 a<br>±1.53         | 154.67<br>±10.33 |                     |                 |                 |                 |                | 110.33 b<br>±1.45          | 72.740**<br>(<0.001)  |
| ŭ     | 0.75           | 134.67<br>±2.03 | 110.33<br>±2.03 |                | 93.00<br>±2.52  |                |               | 80.67 <sup>a</sup><br>±1.76 |                 |                 |                |                | 110.33<br>±1.45 |                | 99.67 <sup>b</sup> ±1.45 | 169.00<br>±3.21  | 130.00<br>±2.33     |                 |                 |                 |                | 119.33 °<br>±1.20          | 168.217**<br>(<0.001) |
|       | 1.00           | 146.00<br>±2.08 |                 |                | 110.67<br>±2.91 |                |               | 100.67 a<br>±2.33           |                 | 145.67<br>±1.76 |                |                |                 |                |                          |                  |                     | 176.00<br>±1.53 |                 | 130.67<br>±1.53 |                |                            | 216.000**<br>(<0.001) |

F: F test (ANOVA) t-test: Student t-test

Table (7a): Effect of pH and protein concentration on the foaming capacity (FC) of casein co-precipitates prepared from camel and cow milks.

|       |                   |                          | pH 7.0     |              |                          | pH 7.5     |             |                          | pH 8.0     |             |
|-------|-------------------|--------------------------|------------|--------------|--------------------------|------------|-------------|--------------------------|------------|-------------|
| milk  | Concentration (%) | Total volume (ml)        | FC%        | FE%          | Total volume (ml)        | FC%        | FE%         | Total volume (ml)        | FC%        | FE%         |
| Camel | 0.25              | 220.33±1.45 <sup>a</sup> | 10.17±0.73 | 110.17±0.73  | 223.67±2.40 a            | 11.83±1.20 | 111.83±1.20 | 239.33±1.20 a            | 19.67±0.60 | 119.67±0.60 |
|       | 0.50              | 236.00±1.53 <sup>b</sup> | 18.00±0.76 | 118.00±0.76  | 240.33±2.60 <sup>b</sup> | 20.17±1.30 | 120.17±1.30 | 260.00±3.46 <sup>b</sup> | 30.00±1.73 | 130.00±1.73 |
|       | 0.75              | 240.67±2.33 <sup>b</sup> | 20.33±1.17 | 120.17±1.30  | 251.67±2.19°             | 26.00±1.26 | 125.83±1.09 | 270.67±1.76°             | 35.33±0.88 | 135.33±0.88 |
|       | 1.00              | 258.33±2.19°             | 29.17±1.09 | 129.17±1.09  | 264.67±2.60 <sup>d</sup> | 32.33±1.30 | 132.33±1.30 | 284.67±2.03 <sup>d</sup> | 42.33±1.01 | 142.33±1.01 |
|       | F-test            | 66.717**                 |            |              | 50.217**                 |            |             | 70.681**                 |            |             |
|       | Sig. (p)          | < 0.001                  |            |              | < 0.001                  |            |             | < 0.001                  |            |             |
|       | 0.25              | 245.33±2.60 <sup>a</sup> | 22.67±1.30 | 122.67±1.30  | 254.33±1.20 a            | 27.17±0.60 | 127.17±0.60 | 266.33±2.40 a            | 33.17±1.20 | 133.17±1.20 |
|       | 0.50              | 259.67±1.45 <sup>b</sup> | 29.83±0.73 | 129.83±0.73  | 274.67±2.03 <sup>b</sup> | 37.33±1.01 | 137.33±1.01 | 281.33±1.86 <sup>b</sup> | 40.67±0.93 | 140.67±0.93 |
| Cow   | 0.75              | 276.67±2.19°             | 38.33±1.09 | 138.33±1.09  | 285.67±1.76°             | 42.83±0.88 | 142.83±0.88 | 294.67±1.45°             | 47.33±0.73 | 147.33±0.73 |
| Cow   | 1.00              | 289.33±2.33 <sup>d</sup> | 44.67±1.17 | 144.67±1.167 | $300.33\pm0.88^{d}$      | 50.17±0.44 | 150.17±0.44 | 299.00±1.53°             | 49.50±0.76 | 149.50±0.76 |
|       | F-test            | 77.665**                 |            |              | 159.039**                |            |             | 63.501**                 |            |             |
|       | Sig. (p)          | < 0.001                  |            |              | < 0.001                  |            |             | < 0.001                  |            |             |
| t-tes | st (p)            | 4.384**<br>(<0.001)      |            |              | 4.871**<br>(<0.001)      |            |             | 3.373**<br>(0.003)       |            |             |

F: F test (ANOVA)

T-test: Student t-test

Different superscripts are significant: \* Significant at p  $\leq$ 0.05

\*\* Significant at p ≤0.01

a-b-c-d: Means the same columns with different subscriptions are significantly different (p ≤0.05

Table (7b): Effect of pH and protein concentration on the foaming capacity (FC) of casein co-precipitates prepared from camel and cow milks.

|       |                   |      |                         | pH 7.0 |        |                         | pH 7.5 |        |                         | pH 8.0 |        |            |
|-------|-------------------|------|-------------------------|--------|--------|-------------------------|--------|--------|-------------------------|--------|--------|------------|
| milk  | Concentration (%) |      | Total<br>volume<br>(ml) | FC%    | FE%    | Total<br>volume<br>(ml) | FC%    | FE%    | Total<br>volume<br>(ml) | FC%    | FE%    | F-test (p) |
| Camel | 0.25              | Mean | 220.33 <sup>a</sup>     | 10.17  | 110.17 | 223.67 a                | 11.83  | 111.83 | 239.33 <sup>b</sup>     | 19.67  | 119.67 | 33.083**   |
|       | 0.25              | ±SE  | 1.45                    | 0.73   | 0.73   | 2.40                    | 1.20   | 1.20   | 1.20                    | 0.60   | 0.60   | (0.001)    |
|       | 0.50              | Mean | 236.00 a                | 18.00  | 118.00 | 240.33 a                | 20.17  | 120.17 | 260.00 b                | 30.00  | 130.00 | 23.247**   |
|       | 0.50              | ±SE  | 1.53                    | 0.76   | 0.76   | 2.60                    | 1.30   | 1.30   | 3.46                    | 1.73   | 1.73   | (0.001)    |
|       | 0.75              | Mean | 240.67 a                | 20.33  | 120.17 | 251.67 <sup>b</sup>     | 26.00  | 125.83 | 270.67 <sup>c</sup>     | 35.33  | 135.33 | 51.825**   |
|       | 0.73              | ±SE  | 2.33                    | 1.17   | 1.30   | 2.19                    | 1.26   | 1.09   | 1.76                    | 0.88   | 0.88   | (<0.001)   |
|       | 1.00              | Mean | 258.33 a                | 29.17  | 129.17 | 264.67 a                | 32.33  | 132.33 | 284.67 <sup>b</sup>     | 42.33  | 142.33 | 36.177**   |
|       | 1.00              | ±SE  | 2.19                    | 1.09   | 1.09   | 2.60                    | 1.30   | 1.30   | 2.03                    | 1.01   | 1.01   | (<0.001)   |
|       | 0.25              | Mean | 245.33 a                | 22.67  | 122.67 | 254.33 b                | 27.17  | 127.17 | 266.33 °                | 33.17  | 133.17 | 23.786**   |
|       | 0.23              | ±SE  | 2.60                    | 1.30   | 1.30   | 1.20                    | 0.60   | 0.60   | 2.40                    | 1.20   | 1.20   | (0.001)    |
|       | 0.50              | Mean | 259.67 <sup>a</sup>     | 29.83  | 129.83 | 274.67 <sup>b</sup>     | 37.33  | 137.33 | 281.33 °                | 40.67  | 140.67 | 38.218**   |
| Cow   | 0.30              | ±SE  | 1.45                    | 0.73   | 0.73   | 2.03                    | 1.01   | 1.01   | 1.86                    | 0.93   | 0.93   | (<0.001)   |
| Cow   | 0.75              | Mean | 276.67 <sup>a</sup>     | 38.33  | 138.33 | 285.67 <sup>b</sup>     | 42.83  | 142.83 | 294.67 <sup>c</sup>     | 47.33  | 147.33 | 24.300**   |
|       | 0.73              | ±SE  | 2.19                    | 1.09   | 1.09   | 1.76                    | 0.88   | 0.88   | 1.45                    | 0.73   | 0.73   | (0.001)    |
|       | 1.00              | Mean | 289.33 <sup>a</sup>     | 44.67  | 144.67 | 300.33 <sup>b</sup>     | 50.17  | 150.17 | 299.00 b                | 49.50  | 149.50 | 12.636**   |
|       | 1.00              | ±SE  | 2.33                    | 1.17   | 1.167  | 0.88                    | 0.44   | 0.44   | 1.53                    | 0.76   | 0.76   | (0.007)    |

F: F test (ANOVA)

Table (8a): Effect of pH and protein concentration on the foaming stability (FS) of casein co-precipitates prepared from camel and cow milks.

|       |                |                |                |                | PH 7.0        | 0             |                |                             |                 |                 |                | PH 7.5         | 5             |                |                             |                |                      |                 | PH 8.          | 0              |                |                             |
|-------|----------------|----------------|----------------|----------------|---------------|---------------|----------------|-----------------------------|-----------------|-----------------|----------------|----------------|---------------|----------------|-----------------------------|----------------|----------------------|-----------------|----------------|----------------|----------------|-----------------------------|
|       | ntration<br>%) |                |                |                |               |               |                |                             | Volu            | me of           | foam (         | ml) at         | 20°C a        | ıfter ti       | me, min                     | •              |                      |                 |                |                |                |                             |
|       | ,              | 0              | 5              | 10             | 15            | 20            | 25             | 30                          | 0               | 5               | 10             | 15             | 20            | 25             | 30                          | 0              | 5                    | 10              | 15             | 20             | 25             | 30                          |
|       | 0.25           | 40.33<br>±0.88 | 14.33<br>±1.20 | 9.67<br>±2.60  | 4.67<br>±2.03 | 0.00<br>±0.00 | 0.00<br>±0.00  | 0.00<br>±0.00               | 55.67<br>±1.76  |                 | 14.33<br>±1.76 | 4.33<br>±1.20  | 0.00<br>±0.00 | 0.00<br>±0.00  | 0.00<br>±0.00               | 64.67<br>±2.03 | 30.33<br>±2.03       | 19.67<br>±0.88  | 11.33<br>±1.86 | 4.67<br>±1.45  | 0.00<br>±0.00  | 0.00<br>±0.00               |
| Camel | 0.50           |                | 35.33<br>±1.45 | 19.00<br>±1.53 |               | 5.33<br>±0.88 | 0.00<br>±0.00  | 0.00<br>±0.00               | 75.33<br>±2.60  |                 |                | 14.33<br>±1.76 | 4.33<br>±1.20 | 0.00<br>±0.00  | 0.00<br>±0.00               |                | 59.67<br>±2.03       | 45.33<br>±2.03  |                | 15.67<br>±1.20 | 4.67<br>±1.45  | 0.00<br>±0.00               |
| Cai   | 0.75           | 66.00<br>±2.08 |                | 35.33<br>±1.45 |               |               | 4.33<br>±1.76  | 0.00<br>±0.00               | 79.00<br>±2.08  |                 |                | 19.33<br>±2.33 |               | 4.67<br>±0.88  | 0.00<br>±0.00               | 99.67<br>±0.88 |                      | 45.33<br>±1.45  |                |                | 6.33<br>±1.86  | 0.00<br>±0.00               |
|       | 1.00           | 74.67<br>±2.03 |                | 25.33<br>±0.88 |               |               | 4.67<br>±0.88  | 0.00<br>±0.00               | 94.33<br>±1.20  |                 |                | 24.33<br>±1.20 |               |                | 0.00<br>±0.00               |                |                      | 54.33<br>±1.76  |                | 14.67<br>±2.03 | 10.6<br>±1.76  | 0.00<br>±0.00               |
|       | 0.25           | 65.67<br>±1.20 | 45.67<br>±1.76 | 40.33<br>±2.60 |               |               |                | 23.00 <sup>a</sup><br>±2.52 | 70.33<br>±2.03  | 49.33<br>±2.33  |                | 39.33<br>±5.22 |               | 30.33<br>±1.45 |                             | 84.33<br>±1.20 |                      | 60.33<br>±0.88  | 54.67<br>±1.76 | 50.33<br>±1.45 | 46.33<br>±1.86 | 38.67 <sup>a</sup><br>±1.86 |
|       | 0.50           |                |                | 51.33<br>±2.96 |               |               | 34.33<br>±1.76 | 28.33 <sup>a</sup><br>±2.19 | 94.33<br>±2.33  |                 |                | 61.00<br>±2.91 |               | 54.33<br>±1.20 |                             |                | 74.33<br>±1.20       | 69.67<br>±2.03  | 66.67<br>±1.76 |                |                | 50.33 <sup>b</sup><br>±0.88 |
| Cow   | 0.75           | 95.67<br>±2.33 |                | 65.33<br>±3.18 |               |               | 50.33<br>±2.03 | 44.67 <sup>b</sup> ±2.03    |                 |                 |                | 75.67<br>±1.53 |               |                |                             |                |                      | 90.33<br>±2.03  |                |                |                | 75.33 <sup>c</sup><br>±1.45 |
|       | 1.00           |                |                | 86.00<br>±2.08 |               |               | 75.33<br>±1.45 | 69.67 <sup>c</sup><br>±2.60 | 128.33<br>±3.79 | 105.33<br>±0.88 | 98.67<br>±2.96 | 95.67<br>±2.33 |               |                | 84.33 <sup>d</sup><br>±1.76 |                |                      | 104.67<br>±0.88 |                |                |                | 85.33 <sup>d</sup><br>±0.88 |
|       | F (p)          |                |                |                |               |               |                | 79.938**<br>(<0.001)        |                 |                 |                |                |               |                | 258.980**<br>(<0.001)       |                |                      |                 |                |                |                | 262.891**<br>(<0.001)       |
| t (   | (p)            |                |                |                |               |               |                | 7.441**<br>(<0.001)         | 8.474**         |                 |                |                |               |                |                             |                | 11.001**<br>(<0.001) |                 |                |                |                |                             |

F: F test (ANOVA) T-test: Student t-test