

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ELECTRICAL POWER AND MACHINES DEPT.

Study on Electrical Characteristics for High Voltage Insulators Polymer Composite using Hybrid Fillers

A Thesis

Submitted in partial fulfillment of the requirement for the Degree of Doctor of Philosophy in Electrical Engineering

By

Mohamed Farouk Abdel-Karim Mohamed

B. Sc. Electrical Engineering, Ain Shams University, 2001M. Sc. Electrical Engineering, Ain Shams University, 2008

Supervised By

Prof. Dr. Abdel-Mohymen Mohamed Soliman

Electrical Power & Machines Dept. Faculty of Engineering Ain Shams University

Prof. Dr. Salem Mahmoud ElKhodary

Electrical Power & Machines Dept. Faculty of Engineering Ain Shams University

Prof. Dr. Samia Habib Mansour

Polymers & Pigments Dept. National Research Center

Prof. Dr. Loai Saad El-Deen Nasrat

Electrical Power & Machines Dept. Faculty of Engineering Aswan University

Dr. Amr Mohamed Ibrahim Hassan

Electrical Power & Machines Dept. Faculty of Engineering Ain Shams University Ain Shames University – Faculty of Engineering Electrical power and Machines Dept.

Approval sheet

Student Name:

Mohamed Farouk Abdel-Karim Mohamed

Thesis Title:

Study on Electrical Characteristics for High Voltage

Insulators Polymer Composite using Hybrid Fillers

Degree Name:

Ph. D of Science in Electrical Engineering

Supervised by

Prof. Dr. Abdel-Mohymen Mohamed Soliman

Electrical Power & Machines Dept. Faculty of Eng., Ain Shams University

Prof. Dr. Salem Mahmoud Elkhodary

Electrical Power & Machines Dept. Faculty of Eng., Ain Shams University

Prof. Dr. Loai Saad El-Deen Nasrat

Electrical Power & Machines Dept. Faculty of Eng., Aswan University

Prof. Dr. Samia Habib Mansour

Polymers & Pigments Dept.
National Research Center

Dr. Amr Mohamed Ibrahim Hassan

Electrical Power & Machines Dept. Faculty of Eng., Ain Shams University

Examiners Committee:

signature

Prof. Dr. Mazen M. Abdel-Salam

Electrical Engineering Dept., Faculty of Engineering, Assiut University

Prof. Dr. Soliman Mohamed El-Debeiky

Electrical Power & Machines Dept., Faculty of Engineering, Ain Shams University

Prof. Dr. Salem Mahmoud Elkhodary

Electrical Power & Machines Dept., Faculty of Engineering, Ain Shams University

Prof. Dr. Loai Saad El-Deen Nasrat

Electrical Power & Machines Dept., Faculty of Engineering, Aswan University

Graduate studies

Date: 31 / 12 / 2015

Thesis Approval date: / /2016

Faculty Approval date: / /2016

University Approval date: / /2016

STATEMENT

This dissertation is submitted to Ain Shams University for

the degree of PHD in Electrical Engineering.

The work included in this thesis was carried out by the

author. No part of this thesis has been submitted for a degree or a

qualification.

Name: Mohamed Farouk Abdel-Karim Mohamed

Signature:

Date: / /2015

Ι

ACKNOWLEDGEMENT

I have the great faith to express my deepest gratitude and sincerest thanks to **Prof. Dr. Abdel-Mohymen M. Soliman** at Electrical power & Machines Department, Faculty of Engineering, Ain Shams University, for his kind supervision, guidance and continuous encouragement.

I have the great honor to express my gratitude and thanks to **Prof. Dr. Salem Mahmoud ElKhodary** at Electrical power & Machines Department, Faculty of Engineering, Ain Shams University, for his helpful and fruitful discussions in the preparation of this thesis.

I would thank **Prof. Dr. Loai S. Nasrat,** Chairman of the Electrical power Department, Faculty of Engineering, Aswan University, for his guidance and unfailing discussions and for every good help until the thesis has been developed.

I feel deeply thankful to **Prof. Dr. Samia H. Mansour,** for her useful suggestions and for her supervision in chemical preparations which were carried out in the laboratory of Polymers and Pigments-National Research Center.

I offer the respect to **Dr. Amr Mohamed Ibrahim Hassan,** for his useful suggestions and advices, and for his supervision in the suggested model which was carried out by software.

Finally, I owe a greate part of research study to the High Voltage Laboratory Staff in the Electrical Department at Ain Shams University and New Cairo Academy, and to all those who assisted me in the accomplishment of this work.

ABSTRACT

The rubber and epoxy are polymeric materials widely-used as insulating materials for many reasons such as; economy, strength and ease fabrication to good tolerance. As a result of the development which has taken place recently; these materials can be produced with various designs and shapes for outdoor applications with suitable electrical and mechanical properties according to their intended purpose.

Composite material has electrical properties such as dielectric strength and electric resistivity which are measured by different tests and compared with different composite materials according to the added filler. The (Micro – Nano – hybrid) filler is inserted in manufacturing the composite material to improve its electrical and mechanical properties.

Epoxy composites are one of the polymeric composite insulators which are used in outdoor insulation. In order to study the electrical behavior of epoxy composites as outdoor applications insulators for overhead transmission lines at different conditions, inorganic fillers such as titanium dioxide and silica with different sizes are inserted into the epoxy to modify its electrical and physical properties in addition to maximize surface flashover voltage and decrease tracking phenomena at dry and contaminated weather conditions. Surface flashover voltage for composite insulators is calculated using neural-network based on mathematical model at any weather condition.

The objective of this research is to study electrical properties of epoxy composites for overhead transmission lines under contaminated weather conditions. The composites include inorganic filler of different types, sizes and concentrations. It is used as insulators. This is aimed at selecting the suitable polymer composite insulator which achieves the maximum surface flashover voltage.

Finally the main salient points of the chosen polymeric insulator for this work have been summarized and presented.

TABLE OF CONTNTENTS

Title			page
STATEMENT			I
AKNOWLE	AKNOWLEDGEMENT		
ABSTRACT			III
TABLE OF CONTENTS			IV
LIST OF ABBREVIATIONS			XI
LIST OF TABLES			XIV
LIST OF PH	LIST OF PHOTOS		
LIST OF FI	LIST OF FIGURES		
Chapter 1:		INTRODUCTION	
	1.1	Preface	1
	1.2	General	1
	1.3	General Concepts of Polymers	2
	1.4	Objective of Thesis	5
Chapter 2:		REVIEW OF PERVIOUS WORK	
	2.1	General	6
	2.2	Electrical Properties of Polymer Composite Insulators	6

	2.3	Mechanical and Physical Properties of Composites as Polymeric Insulator	13
Chapter 3:	PREPA	ARATION OF EPOXY COMPOSITES A LABORATORY TESTS	AND
	3.1	General	17
	3.2	Materials	17
	3.3	Curing of Epoxy Resin	18
	3.4	Preparation of Epoxy Composites	18
	3.5	Testing Samples	21
	3.5.1	Disc Samples	21
	3.5.2	Pin Type Polymer Insulator	22
	3.6	Electrical Test	26
	3.6.1	Puncture Test	26
	a)	Testing Conditions	27
	b)	Schematic Diagram and Wiring of Puncture Test Arrangement	27
	c)	Electrical Supply and Testing Electrodes	28
	d)	Test Procedure	28
	3.6.2	Flashover Test	29
	a)	Testing Conditions	30

	D)	Test Arrangement	31
	c)	Electrical Supply and Testing Electrodes	31
	d)	Test Procedure	32
	3.6.3	Electrical Volume Resistivity Test	32
	3.7	Withstand Test	34
	3.7.1	Hardness Test	34
	3.7.2	Stress – strain Test	34
Chapter 4:	EXPI	ERIMENTAL SETUP & TECHNIQUE EPOXY COMPOSITES	ON
	4.1	General	36
	4.2	Breakdown Test	36
	4.3	Accuracy of Measurement	36
	4.3.1	Expressing the Measurement Uncertainty	37
	4.3.2	Classification of Uncertainty Components	38
	4.4	Uncertainty Concept for Results Data in the Breakdown Test	38
	4.5	Results of The Measured Electrical Properties for Epoxy Composites at Different Type and Size of Fillers	39

4.5.1	Breakdown Test for Epoxy Composite Samples using Titanium Dioxide Filler	41
4.5.2	Breakdown Test for Epoxy Composite Samples using Silicone Dioxide Filler	42
4.5.3	Breakdown Test for Microcomposites using Different Fillers	43
4.5.4	Breakdown Test for Nanocomposites Samples using Different Fillers	44
4.5.5	Analysis and Discussion of Results in Breakdown Test	45
4.5.5.1	Mechanism of Breakdown in Solid Insulating Material	45
4.5.6	Electrical Properties of Hybrid Composite Samples at Different Type and Size of Fillers	47
4.5.6.1	Analysis and Discussion of Results	49
4.5.6.2	Mechanism of Breakdown in Solid Insulating Material	50
4.5.7	Summary obtained from Breakdown Test	50
4.6	Resistivity for Epoxy Composites	51

	4.6.1	Resistivity Test for Epoxy Composites using Titanium Dioxide and Silica Fillers at Different Concentrations	51
	4.6.1.1	Analysis and Discussion of Results	56
	4.6.2	Resistivity Test for Epoxy Composite using Hybrid Fillers at Different Concentrations	58
	4.6.2.1	Analysis and Discussion of Results	60
	4.6.3	Summary obtained from Resistivity Test	61
Chapter 5:		FLASHOVER TEST ON POLYMER COMPOSITE INSULATOR	
	5.1	General	62
	5. 2	Flashover Phenomena for Epoxy	
		Composite Insulator	62
	5.3	Pin Type Composite Insulators	63
	5.4	Experimental Setup and Technique of Artificial Polluted Weather	66
	5.5	Calculation of ESDD (Equivalent Salt Deposit Density)	67
	5.6	Mechanism of Electrical Flashover Test under Dry Condition.	70
	5.7	Mechanism of Electrical Flashover Test under Contaminated Weather.	71

5.8	Comparison between the Porcelain and Polymer Insulator	73
5.9	Electrical performance of Polymeric Composite Insulator provided with Inorganic Filler at Dry condition	75
5.9.1	Analysis And Discussion	76
5.10	Electrical performance of Polymeric Composite Insulator provided with Inorganic Filler at contaminated weather	76
5.10.1	Analysis and Discussion	80
5.11	Electrical performance of Polymeric Composite Insulator provided with Hybrid Filler	80
5.12	Recommendations obtained from of Flashover Test	91
5.13	Prediction of Flashover Voltage for Epoxy Composite Insulators using Neural Network	92
5.13.1	Background of Artificial Neural Network	94
5.13.2	Mechanism of Estimation Flashover Voltages	96
5.13.3	Recommendations obtained from Neural Pattern	102

Chapter 6:		WITHSTAND TESTS	
	6.1	General	103
	6.2	Mechanical Tests	103
	6.3	Analysis of Mechanical Properties of Polymer Composites	103
	6.3.1	Static Mechanical Properties	104
	6.3.2	Dynamic Mechanical Properties	107
	6.4	Summary obtained from Mechanical Test.	114
Chapter 7:	CO	NCLUSIONS AND SUGGESTIONS FOR FUTURE INVESTIGATION	OR
	7.	General	115
	7.1	Conclusions	115
	7.2	Suggestions for Future Investigation	117
References			118
Appendix			129
List of Publi	shed Pap	pers	
Arabic Sum	marv		

LIST OF ABBREVIATIONS

TiO₂ Titanium dioxide SiO₂ Silicon dioxide composite or Silica $Ti_{M0.1}$ Micro titanium dioxide composite loaded with 0.1% $Ti_{M0.25}$ Micro titanium dioxide composite loaded with 0.25% $Ti_{M0.5}$ Micro titanium dioxide composite loaded with 0.5% $Ti_{M0.75}$ Micro titanium dioxide composite loaded with 0.75% Ti_{M1} Micro titanium dioxide composite loaded with 1% Ti_{M3} Micro titanium dioxide composite loaded with 3% Ti_{M5} Micro titanium dioxide composite loaded with 5% Ti_{M7} Micro titanium dioxide composite loaded with 7% $Ti_{N0.1}$ Nano titanium dioxide composite loaded with 0.1% Ti_{N0.25} Nano titanium dioxide composite loaded with 0.25% $Ti_{N0.5}$ Nano titanium dioxide composite loaded with 0.5% Ti_{N0.75} Nano titanium dioxide composite loaded with 0.75% Ti_{N1} Nano titanium dioxide composite loaded with 1% Ti_{N3} Nano titanium dioxide composite loaded with 3% Ti_{N5} Nano titanium dioxide composite loaded with 5% Nano titanium dioxide loaded with 7% Ti_{N7} $Si_{M0.1}$ Micro silica composite loaded with 0.1%

$Si_{M0.25}$	Micro silica composite loaded with 0.25%
$Si_{M0.5}$	Micro silica composite loaded with 0.5%
$\mathrm{Si_{M0.75}}$	Micro silica composite loaded with 0.75%
Si_{M1}	Micro silica composite loaded with 1%
Si_{M3}	Micro silica composite loaded with 3%
Si_{M5}	Micro silica composite loaded with 5%
$\mathbf{Si_{M7}}$	Micro silica composite loaded with 7%
$\mathrm{Si}_{\mathrm{N}0.1}$	Nano silica composite loaded with 0.1%
$Si_{N0.25}$	Nano silica composite loaded with 0.25%
$\mathrm{Si}_{\mathrm{N}0.5}$	Nano silica composite loaded with 0.5%
$Si_{N0.75}$	Nano silica composite loaded with 0.75%
Si_{N1}	Nano silica composite loaded with 1%
Si_{N3}	Nano silica composite loaded with 3%
$\mathbf{Si}_{\mathbf{N5}}$	Nano silica composite loaded with 5%
$\mathrm{Si}_{\mathrm{N7}}$	Nano silica composite loaded with 7%
$Ti_{N}/Si_{N\ (0.1)}$	Hybrid nano titanium dioxide and nano silica with 0.1%
Ti_N/Si_N (0.75)	Hybrid nano titanium dioxide and nano silica with 0.75%
$Ti_{M}/Si_{N\ (0.1)}$	Hybrid micro titanium dioxide and nano silica with 0.1%
Ti_{M}/Si_{N} (0.75)	Hybrid micro titanium dioxide and nano silica with 0.75%
$Ti_N/Si_{M\ (0.1)}$	Hybrid nano titanium dioxide and micro silica with 0.1%
$Ti_N/Si_{M~(0.75)}$	Hybrid nano titanium dioxide and micro silica with 0.75%
$Ti_{M}/Si_{M\ (0.1)}$	Hybrid micro titanium dioxide and micro silica with 0.1%

 $Ti_{M}/Si_{M (0.75)}$ Hybrid micro titanium dioxide and micro silica with 0.1%

 $Ti_{M/N(0.1)}$ Hybrid titanium dioxide composite loaded with 0.1% micro

and nano

 $Ti_{M/N (0.75)}$ Hybrid titanium dioxide composite loaded with 0.75% micro

and nano

Si $_{\text{M/N (0.1)}}$ Hybrid silica composite loaded with 0.1% micro and nano

 $Si_{M/N(0.75)}$ Hybrid silica composite loaded with 0.75% micro and nano

ESDD Equivalent salt deposit density (mg/cm²).

kV kilo Volt

V Volt

KVA Kilo Volt Ampere

BDV Breakdown Voltage

ρ Volume resistivity (Ω.cm)

 σ Volume conductivity (S/m).

U Expanded uncertainty %

S Siemens

M.S. Error Mean square error