GEOLOGICAL EVALUATION AND HYDROCARBON POTENTIALITIES OF THE MIDDLE TO UPPER MIOCENE SEQUENCES IN THE NE NILE DELTA PROVINCE, EGYPT

A THESIS SUBMITTED IN FULFILLMENT OF THE REQUIRMENTS FOR THE DEGREE OF PHYLOSOPHY DOCTOR IN GEOLOGY

By

AMR HASSAN ABD EL FATAH ELEWA

(M. Sc. - GEOLOGY)

DEPARTMENT OF GEOLOGY
FACULTY OF SCIENCE
CAIRO UNIVERSITY
(2008)

APPROVAL SHEET FOR SUBMITTION

GEOLOGICAL EVALUATION AND HYDROCARBON POTENTIALITIES OF THE MIDDLE TO UPPER MIOCENE SEQUENCES IN THE NE NILE DELTA PROVINCE, EGYPT.

A THESIS SUBMITTED IN FULFILLMENT OF THE REQUIRMENTS FOR THE DEGREE OF PHYLOSOPHY DOCTOR IN GEOLOGY

By

AMR HASSAN ABD EL FATAH ELEWA

(M.Sc. - GEOLOGY- 2001)

SUPERVISORS:

- 1. PROF. DR. MOHAMED DARWISH SALIM
- 2. DR. AHMED NIAZY EL-BARKO0KY

PROF. DR. SAID ABD EL-AZIZ
HEAD OF GEOLGY DEPRTMENT
FACULTY OF SCIENCE
CAIRO UNIVERSITY

SUPERVISORS:

PROF. DR. MOHAMED DARWISH SALIM

DR. AHMED NIAZY EL-BARKO0KY

PROF. DR. SAID ABD EL-AZIZ
HEAD OF GEOLGY DEPRTMENT
FACULTY OF SCIENCE
CAIRO UNIVERSITY

ACKNOWLEDGMENT

The author would like to express his appreciation to both the Geology Department, Cairo University and Petroleum Belayim Company for their continuous support and for data provided.

The author wishes to thank **Prof. Dr. Mohamed Darwish**, Professor of Petroleum Geology, Faculty of Science, Cairo University, for supervising this work, and for his constant guidance and support during the progress of this work covered by the present thesis.

The author is grateful to **Dr. Ahmed El-Barkooky** (Geology Department) for his supervision and support during the progress of this work.

Deepest gratitude and appreciation is due to Eng. Hassan Elewa, Reservoir Engineering Consultant, for his continuous help and advice during the practical work.

Special thanks with great debt of appreciation and gratitude are due to my wife **Dr. Lobna Abd El Aziz** for her effort and continuous encouragement throughout this work. Special gratitude is also extending to my mother for her continuous encouragement.

CONTENTS

CHAPTER	PAGE
1. INTRODUCTION	1
1.1 Generalities	1
1.2 Study area	4
1.3 Aim of the present study	4
1.4 Materials and methodology	7
1.5 Analytical approaches and work flow	7
1.6 Previous related studies	8
1.7 Exploration history for hydrocarbons in the Nile Delta area	15
2. REGIONAL GEOLOGICAL SETTING OF THE NILE DELTA	19
2.1 Stratigraphic setting	19
2.2 Structural setting	27
3. DETAILED STRATIGRAPHIC FRAMEWORK OF THE MIOCENE SEQUENCES	30
3.1 Biochronostratigraphic synopsis	30
_3.2 Depositional cycles	35
4. SEDIMENTARY FACIES AND DEPOSITIONAL MODEL	60
4.1. Gravity flow deposits	60
4.1.1 Turbidites	62
4.1.1.1 Bouma sequence	62
4.2. Depositional model of the present study	63
4.2.1. Submarine channel belt	63
4.2.2 Submarine fan model	66
4.3. The sedimentary facies model of the study area	67
4.3.1 Dipmeter interpretation	70
4.3.2. Lithologic cycle I- A	73

4.3.3. Lithologic cycle I-A/B transitional	73
4.3.4. Lithologic cycle I-B	74
4.3.5. Lithologic cycle I-C	80
4.3.6. Lithologic cycle II-A	83
4.3.7. Lithologic cycle II-B	86
4.3.8. Lithologic cycle II-C	90
4.3.9. Lithologic cycle II-D	93
4.3.10. Lithologic cycle II-E	97
5. CHANNEL SYSTEMS DEVELOPMENT AND TECTONIC IMPACTS	100
6. PETROPHYSICAL ASSIGNMENT AND GAS BEARING INTERVALS	107
6.1. Interpretation approaches	107
6.1.1 Pre- Interpretation phase	107
6.1.1.A. Determination of water resistivity	108
6.1.1 B. Calculation of clay volume	108
6.1.2 Interpretation phase	109
6.1.2.A Determination of porosity	109
6.1.2.B Determination of fluid saturation	112
6.1.2.C Permeability determination	113
6.2. Petrophysical Assignment of the study sequences	114
6.2.1. Mega cycle I	115
6.2.2 Mega cycle II	126
6.3. Diagenesis	132
6.4. Formation pressure analysis	132
7. IMPACT OF HYDROCARKBON PROSPECTIVITY	138
7.1. Potential hydrocarbon source rock	139
7.1.1. The Mesozoic sediments	142
7.1.2. Tertiary sequences	144
7.2 Gas characterization	149
7.3 Reservoir Rocks	151

7.4 Migration and entrapment	153
7.4 Prospectivity and future exploration	156
8. SUMMARY AND CONCLUSION	158
9. REFERRANCES	162
10. ARABIC SUMMARY	

LIST OF FIGURES

Fig.(1.1)The Mediterranean sea as it would appear from the space.	1
Fig.(1.2)Major gas fields in the Nile Delta area.	5
Fig.(1.3)Location map showing study area and wells.	6
Fig.(1.4)Analytical approaches and flow chart of the present study.	9
Fig.(1.5)Nile Delta map showing the main tectonic trends, fields	
alignments and concession boundaries.	11
Fig.(2.1)Generalized stratigraphic column for north Nile Delta area.	20
Fig.(2.2)The evolution of Tertiary section in the Nile Delta region.	21
Fig.(2.3)The relative change in the sea level in the Miocene-Pliocene time.	25
Fig.(2.4)Nile Delta Structural features.	27
Fig.(2.5)Genarlized cross section showing structural features.	27
Fig.(2.6)An E-W offshore geological model of North Nile Delta .	28
Fig.(2.7)East Madireanian structral doain map, showing the main normal	
fault trends.	29
Fig.(3.1)Forminiferal zonation of the study area.	30
Fig.(3.2)A type well model represented by TWN-1 well showing	
Serravallian Forminiferal zones .	31
Fig.(3.3)A type well model represented by PFM-5 well showing	
Forminiferal zones .	32
Fig.(3.4)The synoposis of the biochronostratigraphic framework of the study	
wells, Eastern subbasin, Nile Delta	34
Fig.(3.5)A type well model represented by Abu Seif-1 well showing	
Mega cycles I and II.	36
Fig.(3.6)A type well (T-4) model representing the lithological cycle I-A.	37
Fig.(3.7)Photomicrographic images of the petrographic aspects of	
the sandstone of lithologic cycle I-A/B transition .	38
Fig.(3.8)A type well (T-3) model representing the lithological cycle I-A/B.	39

Fig.(3.9)NW-SE correlation profile of Lithological cycle I-A/B transition	
where three subcycles could be distinguished (1,2&3).	40
Fig.(3.10)A type well (TE-1) model representing the lithological cycle I-B	41
Fig.(3.11)NW-SE correlation profile of Lithological cycle I-B ,where	
two subcycles could be distinguished (1&2).	42
Fig.(3.12)Photomicrographic images of the sandstones of the lithologic	
cycle I- B.	43
Fig.(3.13)A type well (T-3) model representing the lithological cycle I-C	44
Fig.(3.14)NW-SE correlation profile of Lithological cycle I-C ,	
where three subcycles could be distinguished (1,2&3).	45
Fig.(3.15)Wak-2 type well model representing the lithological cycle II-A	47
Fig.(3.16)NW-SE correlation profile of Lithological cycle II-A , where	
three subcycles could be distinguished (1,2&3).	48
$Fig. (3.17) A \ type \ well \ (PFM \ SE-1) \ model \ representing \ the \ lithological \ cycle \ II-B.$	49
Fig.(3.18)A photomicrographic image showing a moderate to poorly	
sorted sandstone in the lithologic cycle II-B.	50
Fig.(3.19)NW-SE correlation profile of Lithological cycle II-B ,	
where three subcycles could be distinguished (1,2&3).	51
Fig.(3.20)Core slaps showing the fining upwords character for the lithulogic	
cycle II-B in PFM-5 well.	52
Fig.(3.21)Type well (PFM SE-1) model representing the lithological cycle II-C.	53
Fig.(3.22)A NW-SE correlation panel for Lithological cycle II-C where	
three sub cycles could be distinguished.	54
Fig.(3.23)A type well (T-3) model representing the lithological cycle II-D.	55
Fig.(3.24) A NW-SE correlation profile of Lithological cycle II-D where	
it could be distinguished into three sub cycles.	56
Fig.(3.25) A type well (Abu Seif-1) model representing the lithological	
cycle II-E.	57

Fig.(3.26)A NW-SE correlation profile of Lithological cycle II-E where it	
could be distinguished into three sub cycles.	59
Fig.(4.1)Type of flow and mechanisms of sediment transport for different	
types of sediment flow.	61
Fig.(4.2)Idealized sequence of sedimentary textures and structures in	
a classical turbidite, or Bouma sequence	62
Fig.(4.3)Channel – fill models for erosional, depositional, and mixed	
channel –fill types.	64
Fig.(4.4)General sketch showing submarine fan.	66
Fig.(4.5)The absence of the lithologic cycle I-A/B transition in well T-4.	68
Fig.(4.6)Stacked fining up pattern representing stacked channel.	
within the lithologic cycle II-A and II-B in Abu Seif-1 well.	68
Fig.(4.7)Channel belt complex within the lithologic cycles II-A and II-B	
in Wak-2 well.	69
Fig.(4.8)NW-SE seismic line showing the channelized stratigraphic feature.	70
Fig.(4.9a)Sand bar and its dipmeter pattern.	71
Fig.(4.9b)Channel fills and its dipmeter pattern.	72
Fig.(4.10)Cross bedded starta and its dipmeter pattern.	72
Fig.(4.11)Structural dip in Lithologic cycle I-A in PFM-2 well.	73
Fig.(4.12)Isopach map of lithologic cycle I-A/B transition.	73
Fig. (4.13)Sand isolith map for cycle I-A/B transition.	74
Fig. (4.14)Dipmeter interpretation of the lithologic cycle I-A/B transition	
inT-3 well.	75
Fig. (4.15)Cycle I-B isopach map.	75
Fig. (4.16)Sand isolith map for cycle I-B in Temsah field.	76
Fig. (4.17)Sand isolith map for cycle I-B in Wakar field.	76
Fig. (4.18)Dipmeter interpretation of the lithologic cycle I-B inT-3 well.	77
Fig. (4.19)Dipmeter interpretation of the lithologic cycle I-B in TNW-1 well.	78
Fig. (4.20)Dipmeter interpretation of the lithologic cycle I-B in TE-1 well.	78

Fig. (4.21)NE-SW seismic section showing base of slope channel filled	
with sand.	79
Fig. (4.22)NW-SE seismic section parallel to its axis of the channel	
drilled by T-8 well.	80
Fig. (4.23)Dipmeter interpretation of the lithologic cycle I-B in Wak-2 well	81
Fig. (4.24)Lithologic cycle I-C isopach map.	81
Fig. (4.25)Sand isolith map for lithologic cycle I-C in Temsah field.	82
Fig. (4.26)Sand isolith map for lithologic cycle I-C in Wakar field.	82
Fig. (4.27)Dipmeter interpretation of lithologic cycle I-C in T-3 well.	83
Fig. (4.28)Lithologic cycle II-A isopach map.	83
Fig.(4.29)Sand isolith map for cycle II-A in Wakar field.	84
Fig.(4.30)Sand isolith map for lithologic cycle II-A in Port Fouad Marine field.	84
Fig.(4.31)Dipmeter interpretation of lithologic cycle II-A in PFM-2 well.	85
Fig.(4.32)Dipmeter interpretation of lithologic cycle II-A in PFMSW-2 well.	86
Fig.(4.33)Dipmeter interpretation of lithologic cycle II-A in Wak-2 well.	86
Fig. (4.34)Lithologic cycle II-B isopach map.	87
Fig.(4.35)Sand isolith map for lithologic cycle II-B in Port Fouad Marine Feld.	87
Fig.(4.36)Sand isolith map for lithologic cycle II-B in Wakar field.	88
Fig.(4.37)Dipmeter interpretation of lithologic cycle II-B in PFMSW-2 well.	88
Fig.(4.38)NW-SE seismic section showing channalized features, drilled .	
by PFMSE-2 well.	89
Fig.(4.39)Dipmeter interpretation of lithologic cycle II-B in Wak-2 well.	89
Fig. (4.40)NE-SW seismic section showing channel belt and its response	
on the GR curve of Kersh -1 well.	90
Fig.(4.41)Isopach map of lithologic cycle II-C.	91
Fig.(4.42)Sand isolith map for lithologic cycle II-C in Port Fouad Marine field.	92
Fig.(4.43)Sand isolith map for lithologic cycle II-C in Wakar field.	92
Fig.(4.44)Dipmeter interpretation of lithologic cycle II-C in Wak-2 well.	92

Fig.(4.45)NW-SE seismic section showing channel level and base of slope	
channel filled with sand in cycle II-A.	93
Fig.(4.46)Lithologic cycle II-D isopach map.	94
Fig.(4.47)Sand isolith map for lithologic cycle II-D in Temsah field.	94
Fig.(4.48)Dipmeter interpretation of lithologic cycle II-D in T-3 well.	95
Fig.(4.49)NE-SW seismic line showing the Serravallian and the base of	
reincised channel system during the Tortonian.	95
Fig.(4.50)Sand isolith map for lithologic cycle II-D in Wakar field.	96
Fig.(4.51)Sand isolith map for lithologic cycle II-D in Port Fouad Marine field.	96
Fig.(4.52)Dipmeter interpretation of lithologic cycle II-D in PFMSW-2 well.	97
Fig.(4.53)Temsah field channalized model.	98
Fig.(4.54)Wakar field channalized model.	99
Fig.(4.55)Port Fouad Marine field channalized model.	99
Fig.(5.1)NW-SE regional interpreted seismic line showing the present day	
structure of the study area.	101
Fig.(5.2)NW-SE regional interpreted seismic line showing Bardawil line	
(Temsah trend).	101
Fig.(5.3)Schematic model showing channels pathway controlled by structure	
setting at the beginning of Serravallian time.	103
Fig.(5.4)Schematic diagram showing the structure setting of the NE province	
in the beginning of the Serravallian time.	104
Fig.(5.5)Schematic model showing channels pathway controlled by structure	
setting at the beginning of Tortonian time.	105
Fig.(5.6)Schematic diagram showing the structure setting of the NE province	
in the beginning of the Tortonian time.	104
Fig.(6.1)Nitrogen vertical permeability and draw down mobility versus depth	
of lithologic cycles I-A/B transition.	114
Fig.(6.2)Petrophysical cross plot of lithologic cycle I- A/B transition in	
TNW-1 well.	115

$Fig. (6.3) Petrophysical\ cross\ plot\ of\ lithologic\ cycle\ I-A/B\ transition\ in\ TE-1 well.$	117
Fig.(6.4)Petrophysical cross plot of lithologic cycle I-A/B transition in T-3 well.	121
Fig.(6.5)Petrophysical cross plot of lithologic cycle I-B in wells TNW-1, T-3,	
TE-1 and T-7.	123
Fig.(6.6)Petrophysical cross plot of lithologic cycle I-C in wells Wak-1,T-7,	
T-3 and Abu seif-1.	125
Fig.(6.7)Petrophysical cross plot of lithologic cycle II-B in wells	
Wak-2 and PFM-5.	127
Fig.(6.8)The cored interval at subcycle three of the lithologic cycle II-B in	
PFM-5 well.	129
Fig.(6.9)The core interval at subcycle three of the lithologic	
cycle II-B in Wak-2 well .	129
Fig.(6.10)Lithological cycle II-D in T-3 well showing the cores interval .	130
Fig.(6.11)Petrophsical cross plot of cycle II-D in T-3 well.	131
Fig.(6.12)Pressure profile for lithologic cycle I- A/B transition.	133
Fig.(6.13)Pressure profile for lithologic cycle I- B.	134
Fig.(6.14)Pressure profile for lithologic cycle II-A for PFM wells .	135
Fig.(6.15)Pressure profile for litholgic cycle II-A for Wakar field wells.	136
Fig.(6.16)Pressure profile for lithologic cycle II-B for PFM field wells.	136
Fig.(6.17)Pressure profile for lithologic cycle II-B for Wakar field wells.	137
Fig.(7.1)Location map showing the main hydrocarbon discoveries in the	
north Nile Delta basin.	138
Fig.(7.2)The origin and maturation of petroleum.	140
Fig.(7.3)Geochemical log for Qantara S-1 well.	142
Fig.(7.4)Geochemical log for Tineh-1 and Tineh-2 wells.	143
Fig.(7.5)Geochemical log for PFM-1 and Wak-1 wells.	144
Fig.(7.6)Geochemical log for El Fayrouz-1 and S Port Said-1 wells.	145
Fig.(7.7)Geochemical log for PFM SE-1 well.	147
Fig.(7.8) PFM SE=1 well burial history profile.	147

Fig.(7.9)PFM SE=1 well maturity profile.	147
Fig.(7.10)Geochemical log for T-4 well.	148
Fig.(7.11)Gas characterization.	150
Fig.(7.12)Reservoir intervals in Temsah field represented by T-8 well.	152
Fig.(7.13)Reservoir intervals in Wakar field representing by Wak-2 well.	153
Fig.(7.14)Reservoir intervals in Port Fouad Marine field represented	
by PFM SE-1 well .	154
Fig.(7.15)Schematic NE-SW geological cross section showing the	
source rock and migration pathway.	154
Fig.(7.16)The features prospects of Serravallian channel system.	156
Fig.(7.17)The features prospects of Tortonian channel system.	157

LIST OF PLATES

Plate 1) showing the main composition of sandstone in cycle 1-A/B (transition)	
in TNW-1well.	116
Plate 2) showing the main composition of sandstone of sub feldspathic wake	
type in cycle A/B transition in TNW-1well.	118
Plate 3) showing good reservoir quality in cycle A/B Ttransition in TE-1well.	119
Plate 4) showing that primary and secondary porosity are moderately	
interconnected in cycle I-A/B transition in TE-1well.	120
Plate 5) showing the main composition of sandstone and the high reservoir	
potential in litholgic cycle I-B in TNW -1well.	122
Plate 6) showing the high reservoir potential represented by cluster two in	
litholgic cycle I-B in TNW -1 well.	124
Plate 7) showing the subarkosic rock type represented in cluster one in	
lithologic cycle II-B in Wak-2 well.	127
Plate 8) showing the high reservoir potential in the lithologic cycle II-B in	
Wak-2 well .	128