

Carbon Dioxide Removal from Natural Gas Using Nano-Layered Materials

Dissertation Submitted by

Ayat Abd El-Aziz Ebrahim Abd El-Aziz (M.Sc., Chemistry, 2005)

Assistance Researcher-Egyptian Petroleum Research Institute

In Fulfillment of the Requirement for the Philosophy Degree
"Ph. D."
Chemistry

To Chemistry Department Faculty of Science Ain Shams University Cairo, Egypt

Ain Shams University Faculty of Science Chemistry Department

Carbon Dioxide Removal from Natural Gas Using Nano-Layered Materials

A Thesis Submitted by

By Ayat Abd El-Aziz Ebrahim Abd El-Aziz M.Sc., Chemistry, 2005

for Ph. D. Degree in Chemistry Supervised By

Prof .Dr .Salah A. Hassan Chemistry Department Faculty of Science Ain Shams University Prof .Dr. Ahmed K.
Aboul-Gheit
Processes Development Department
Egyptian Petroleum Research
Institute

Prof. Dr. Sami Faramawy
Analysis and Evaluation
Department
Egyptian Petroleum Research
Institute

Ass. Prof. Tamer Zaki Sharara Refining Department Egyptian Petroleum Research Institute

Chemistry Department Faculty of Science Ain Shams University 2012

Approval Sheet

Title of the thesis:

Carbon Dioxide Removal from Natural Gas Using Nano-Layered Materials

Submitted by:

Ayat Abd El-Aziz Ebrahim Abd El-Aziz

Supervisors:

Name	Position	signature
Prof. Dr. Salah A. Hassan	Chemistry Department - Faculty of Science - Ain Shams University	
Prof . Dr. Ahmed K. Aboul-Gheit	Processes Development Department - Egyptian Petroleum Research Institute	
Prof. Dr. Sami Faramawy	Analysis and Evaluation Department - Egyptian Petroleum Research Institute	
Ass. Prof. Tamer Zaki Sharara	Refining Department - Egyptian Petroleum Research Institute	

Head of Chemistry Department

Prof. Dr. Maged Shafik Antonious Nakhla

Qualification

Name: Ayat Abd El-Aziz Ebrahim Abd El-Aziz

Scientific Degree: Ph. D.

Department: Chemistry

College: Faculty of Science

University: Al-Azhar University

M.Sc.: 2005

B.Sc.: 1999

Job: Researcher Assistant – Evaluation and

Analysis Department- Egyptian

Petroleum Research Institute.

الله سورة الإسراء: آية (٨٥)

Acknowledgment

"In the name of Allah, the Most Gracious and the Most Merciful"

First of all, I would like to express my gratitude to **Almighty ALLAH** for the countless blessings.

It would not have been able to complete this work without the help and support of the kind people around me, to only some of whom it is possible to give particular mention here. Thank you so much.

I would like to appreciate my honorable supervisors; working under their supervision gives me a lot of knowledge and experience.

My Sincere gratitude and respect to **Prof.Dr.Salah A. Hassan** for his interest in the work, encouragement, support, and for sponsoring the thesis to the university. Deep thanks and gratitude to **Prof.Dr. Ahmed K. Aboul-Gheit** for his direct supervision, guidance and revising the thesis.

I would like to express my deepest appreciation and gratitude to **Prof. Dr. Sami Faramawy** for suggesting the problem, supervision, encouragement, support, motivation, his professional guidance and revising the thesis. Thank you for the patience and tolerance.

My deepest gratitude and grateful thanks goes to **Dr. Tamer Zaki Sharara** for his valuable efforts, guidance, helpful discussions, and enduring support and patience. Thank you for being a brother rather than supervisor.

Special gratitude and appreciation thanks to **Dr. Osama Saber Yehia** for helping me in the synthesis part in the thesis, Continuous advice and permanent motivating support.

I wish to express my deep sense of gratitude and respect to **Prof. Dr. Said Salah El-Nashaie** for his helpful guide.

An ocean of thanks to all my college in the central laboratories especially **Dr Waleed El-Azab**, **Dr. Mohamed Abdel Salam**, **Dr. Ahmed Rashad**, **Mr. Mohamed Bakry**, **Mr. Sherif Ali Yones**, **Mr. Mohamed El-Shafi** and **Mrs. Eman Said Abdullah** for their contentious support, motivation, and carefulness to complete this work.

Also, deep thanks to the Scanning Electron Microscope and Transmission Electron microscope teams, for their patience and effort in picturing the prepared materials. Sincere thanks to all my friends in the Refining Department.

I would like to express my sincere gratitude and appreciation to my parents for their endless love, support, encouragement, prayers, and sacrifices. Thank you for being my parents. No words can describe my gratefulness to you. I also extended my gratitude to my sisters, brothers, my parents in-law, my sister in-law and to every one who prayed and cared for me.

Many grateful thanks and gratitude goes to my husband, **Waleed**, for his understanding, support, motivation and patience. Thanks to the piece of my heart, my children, **Nourhan**, **Ahmed** and **Mohamed**. Forgive me for not being an ideal mum during my research work.

Lastly, I offer my regards and blessings to all of those, not mentioned by name, whom supported me in any respect during the completion of the thesis. Thank you all very much.

Ayat Abd El-Aziz Ebrahim

DEDICATION

TO

MY PARENTS

MY HUSBAND WALEED ELAZAB

MY CHILDREN

NOURHAN

AHMED

MOHAMED

ALL MY FAMILY

THANKS TO ALLAH WHO GAVE ME SUCH A GREAT FAMILY

SPACIAI DEDICATION

To

Prof. Dr. Sami Faramawy

a professor is someone who inspires and shares knowledge to his students. Lucky I must have been to be one of those auspicious souls. You may have passed on to a better place, but we carry within us your legacy and it will never go astray. I am who I am because of your dedication and aspiration. No words are enough to describe my gratitude. A word of thanks is incomplete to display my appreciation.

Your sincerely

Ayat Abd El-Aziz

Contents

	page
Acknowledgement	
Abstract	xiv
Scope of the work	XV
I. Introduction	1
I.1 Natural Gas Origin	2
I.1.1 Thermogenic Process	3
I.1.2 Biogenic Process	5
I.1.3 Abiogenic Process	5
I.2 Natural Gas Reservoirs	6
I.3 Classification of Natural Gas	8
I.3.1 Classification According to the Origin	8
I.3.1.1 Conventional Gas	8
I.3.1.1.1 Associated Gas	8
I.3.1.1.2 Non-associated Gas	9
I.3.1.2 Unconventional Gas	9
I.3.1.2.1 Coal-bed Methane	9
I.3.1.2.2 Shale Gas	10
I.3.1.2.3 Deep Aquifers	10
I.3.1.2.4 Gas Hydrates	11
I.3.2 Classification According to Chemical	12

Composition	
I.3.2.1 Hydrocarbon Content	12
I.3.2.2 Sulfur Content	12
I.4 Natural Gas Composition	12
I.5 Natural Gas Proven Reserves	20
I.6 Natural Gas Processing	21
I.6.1 Removal of Liquid Hydrocarbon	22
I.6.2 Removal of Water	23
I.6.2.1 Absorption Process	24
I.6.2.2 Adsorption Process	25
I.6.2.3 Gas Permeation	25
I.6.3 Removal of Mercury	25
I.6.3.1 Non-regenerative Processes	25
I.6.3.2 Regenerative Process	26
I.6.4 Removal of Trace Components	26
I.6.5 Removal of Acid Gases	27
I.6.5.1 Biological Process	31
I.6.5.2 Absorption Processes	31
I.6.5.2.1 Chemical Solvent Processes	32
a- Amine based absorption	32
b- Carbonate-based absorption	36
c- Caustic-based absorption	36
L6.5.2.2 Physical Solvent Processes	37

a- Methanol-based process	38
b- Selexol process	38
c- Purisol® Process	38
d- Fluor Solvent	39
e- Ionic liquids	39
I.6.5.2.3 Hybrid Solvent Process	40
I.6.5.3 Adsorption Processes	40
I.6.5.3.1 Low temperature sorbents	41
a- Microporous and mesoporous materials	41
b- Oxorbon	46
c- Membrane process	46
I.6.5.3.2 High temperature sorbents	47
a- Hydrogen sulfide scavenger processes	47
b- High temperature CO ₂ sorbents	47
I.7 Hydrotalcites	48
II.Experimental	52
II.1 Materials Used	52
II.2 Hydrotalcites Synthesis	53
II.3 Characterization of Prepared Hydrotalcites	55
II.3.1 Elemental Analysis	55
II.3.2 Atomic Absorption Spectroscopy	57
II.3.3 Powder X-ray Diffraction (XRD)	57
II 3.4 Fourier Transform Infrared (FTIR)	59

Spectroscopy	
II.3.5 Thermal Analysis	59
II.3.6 Ultraviolet-Visible Diffuse Reflectance	60
Spectroscopy (UV-Vis DRS)	60
II.3.7 Scanning Electron Microscope (SEM)	60
II.3.8 High Resolution Transmission Electron	<i>(</i> 0
Microscope (HRTEM)	60
II.4 Adsorption of Carbon Dioxide	61
III. Results and discussion	
Part 1: Zn-Al LDHs	
III.1 Characterization of the Prepared Zn-Al	
LDHs	65
III.1.1 pH Changes	65
III.1.2 Element Chemical Analysis	69
III.1.3 Powder X-ray Diffraction (XRD)	71
III.1.4 Fourier Transform Infrared (FT-IR)	0.6
Spectroscopy	86
III.1.5 Thermal Analysis	104
III.1.6 Ultraviolet-Visible Diffuse Reflectance	104
Spectroscopy (UV-Vis DRS)	124
III.1.7 Microscopy Images	126
Part 2: Mo-Al I.DHs	

III.2 Characterization of the Prepared Mg-Al	101
LDHs	131
III.2.1 pH Changes	131
III.2.2 Element Chemical Analysis	133
III.2.3 Powder X-ray Diffraction (XRD)	136
III.2.4 Fourier Transform Infrared (FTIR)	149
Spectroscopy	149
III.2.5 Thermal Analysis	167
III.2.6 Ultraviolet-Visible Diffuse Reflectance	185
Spectroscopy (UV-Vis DRS)	103
III.2.7 Microscopy Images	187
Part 3: Carbon Dioxide Adsorption	
III.3 Adsorption of Carbon Dioxide Using	192
LDHs	172
III.3.1 Effect of Time on the Adsorption	194
Activities	174
(a)Total adsorption capacity	194
(b) Selectivity	200
III.3.2 Effect of Bed-Temperature on the	204
Adsorption Activities	207
III.3.3 Effect of Inlet Stream Flow Rate on the	206
Adsorption Activities	200
Summary and Conclusions	207

References 219

Arabic Summary