Ain Shams University
Faculty of Engineering
Electrical Power & Machines Department

Methods of Accurate Measurement Of Passive Reactive Elements

By

Eng. Heba Ahmed Mohamed Hamed

A THESIS

Submitted in partial fulfillment of the requirements for the degree of M.Sc. in Electrical Engineering

Supervised by:

Prof. Dr. Hamdy Salah Khalel El-Gohary

Prof. Dr. Abla Hosni Abd El- Rahman

Prof. Dr. Shendy Mohamed Ali El-Shal

Cairo2013

SUPERVISION SHEET

Methods of Accurate Measurement Of Passive Reactive Elements

<u>By</u>

Eng. Heba Ahmed Mohamed Hamed

A THESIS

Submitted in partial fulfillment of the requirements for the degree of M.Sc. in Electrical Engineering

Supervised by:

Prof. Dr. Hamdy S.K. El-Gohary
Faculty of Engineering - Ain Shams University

Prof. Dr. Abla Hosni Abd El-Rahman National Institute for Standards (NIS)

Dr. Shendy Mohamed Ali El-Shal National Institute for Standards (NIS)

Date: 2/1/2013

APPROVAL SHEET

Methods of Accurate Measurement Of Passive Reactive Elements

By

Eng. Heba Ahmed Mohamed Hamed

A THESIS

Submitted in partial fulfillment of the requirements for the degree of M.Sc. in Electrical Engineering

Approved by:

Signature

Prof. Dr. Nadia Nassif Tadroos National Institute for Standards (NIS)

Prof. Dr. Ibrahim Mahmoud El-Shaaer Faculty of Engineering - Ain Shams University

Prof. Dr. Hamdy S.K. El-Gohary
Faculty of Engineering - Ain Shams University

Date: 2/1/2013

STATEMENT

This thesis is submitted to Ain Shams University in partial fulfillment of the requirements for the degree of M.Sc. in Electric Engineering.

The included work in this thesis was carried out by the author at Department of the Electrical & Electronic Measurements, the National Institutes for Standards (NIS). No Part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name: Heba Ahmed Mohamed Hamed

Date: January, 2013

Acknowledgment

I wish to express my deep gratitude and respect to my supervisors' committee: Prof. Dr. Hamdy S. K. El-Gohary, Prof. Dr. Abla Hosni Abd El-Rahman and Dr. Shendy Mohamed Ali El-Shal. Their helpful and valuable discussions were the core reason for accomplishing this work.

My deep gratitude and appreciation to Prof. Dr. Hamdy Salah Khalel El-Gohary for his assistance and encouragement throughout the work.

My faithful appreciations are expressed to Prof. Dr. Abla Hosni Abd El-Rahman for her precious advice and guidance throughout the review of the work.

My very special thanks to Dr. Shendy Mohamed Ali El-Shal for his following up.

The assistance of my colleague Ass. Prof. Dr. Mohamed Helmy Abd El-Raouf, Inductance and Capacitance Lab, National Institute for Standards (NIS), EGYPT is gratefully acknowledged.

I'm also grateful to my colleagues and all the stuff at NIS for their valuable help.

Finally, I would like to express my boundless gratitude to my mother, my father, my husband and my brothers for their valuable help, patience and understanding all along the way.

To My Family
To My Son
To My Daughter

ABSTRACT

For accurately investigate the capability of the capacitance and inductance laboratory at NIS, this work describes a recent study on the performance of two types of accurate measuring methods, namely the classical bridge method and the electronic method. These methods are represented by three instruments that measure the standard capacitors and standard inductors. The first method is based on using both of the precision capacitance bridge assembly and the precision inductance bridge assembly. On the other hand, the second method makes use of the precision LCR meter. All these instruments are available in the capacitance and inductance laboratory at the National Institute for Standards (NIS), Egypt.

All of the bridge assemblies depend on one of the classical methods of measuring. The bridge method is based on comparison between the voltages and currents of the measured unit and a reference standard unit until a condition of balance is reached.

The precision LCR meter depends on electronic method of measurement which applies a default value of voltage across the measured unit. Then, it measures the voltage across the measured unit, the current flowing through it, and the phase angle between them. These three measurements are used to calculate several parameters which describe the measured unit.

Accurate measurements and calibrations of a group of standard capacitors and a group of standard inductors are carried out precisely through this study at two different frequencies (50 Hz and 1 kHz). All precautions have been performed which minimize the resulted error, such as the effect of temperature, humidity, electromagnetic interferenceetc. The uncertainty statement was reported for the measured values of capacitances and inductances according to the requirements of the international standard ISO/IEC 17025.

The measured values from both the bridges and the LCR meter show that the uncertainty of measured values of the instruments at 1 kHz frequency is much better than the accuracy of measured values of the instruments at 50 Hz by more than double.

The measured values at different frequencies and the investigated expanded uncertainties fairly demonstrate that bridges show high accuracy and less uncertainty of measured values at both frequencies. The precision LCR meter, although it is more recent and more sophisticated provides less accurate results. Even, the use of this meter saves time, effort and cost.

It was deduced that the NIS, Capacitance and Inductance laboratory finally has a level of uncertainty for inductance measurements better than 5 mH in range of Henry, 5 μ H at milli-Henry range, and 20 nH at range of micro-Henry for 1 kHz frequency and a level of uncertainty better than 10 mH in range of Henry, 10 μ H at milli-Henry range, and 25 nH at range of micro-Henry for 50 Hz frequency.

Also, It was deduced that the NIS, Capacitance and Inductance laboratory has a level of uncertainty for capacitance measurements better than 0.7 fF in range of pico-farad, and 1 nF in range of micro-Farad for 1 kHz frequency and a level of uncertainty better than 10 fF in range of pico-Farad, and 3 nF at range of micro-Farad for 50 Hz frequency.

CONTENTS

		Pages
Abstrac	et	vi
Contents		viii
Lists of Tables		xiv
Lists of	Figures	xvi
List of Symbols		xxii
Introdu	ection	xxiv
	Chapter One	
Rev	view of Metrology, Standards and Measurer	nent
	Method of Passive Reactive Elements	
1.1	Metrology	1
1.1.1	Definition	1
1.1.2	Activities of Metrology	2
1.1.3	Types of Metrology	2
1.2	Measurement	3
1.2.1	Factors of measurement	3
1.2.2	Types of measurements	4
1.2.3	Accuracy and Precision of Measurements	6
1.2.4	Errors in Measurement	6
1.3	Uncertainty of Measurement	7
1 2 1	Common Sources of Uncertainties in Electrical	7
1.3.1	Measurements	7
1.3.2	Evaluating of the Standard Uncertainty	9
1.4	Calibration	10
1.4.1	Definition	10
1.4.2	Metrology Laboratories	11
1.4.3	Measurement and Calibration	12
1.5	Traceability of Measurement	12
1.6	International System of units (SI)	14
1.6.1	The Base and the Derived Units of SI system	14
1.6.2	SI prefixes	16
1.7	The Electrical Metrology	16
1.8	Passive Reactive Components	17
1.8.1	Capacitance and Capacitance Standards	17
1.8.1.1	Calculable Capacitor	19
1.8.1.2	Two-terminal Capacitor	20
1.8.1.3	Three-terminal Capacitor	21
1.8.1.4	Five-terminal Capacitor	24
1.8.2	Inductance and Inductance Standards	25
1.8.2.1	Design of Inductance Standards	26
1.8.2.2	Calculable Inductance	28
1.8.2.3	Applications of the Reactive Components	29

1.9	Measurement Methods for Passive Reactive Elements	30
1.9.1	Current-Voltage Methods	31
1.9.1	8	32
1.7.4	AC Bridges AC Bridges for measurement of self-	34
1.9.2.1	AC Bridges for measurement of self-inductance	34
1.9.2.2	AC Bridges for measurement of Capacitance	37
1.9.2.3	Sources of Errors in the Bridge Circuits	40
1.9.2.4	Precautions and Techniques used for Reducing Errors	41
1.9.3	Resonance Methods	42
1.9.3.1	Q-meter	43
1.9.4	Electronic Method	43
	CHAPTER TWO	
Refe	rence Standards and Measuring instrument	ts of
	Passive Reactive Elements at NIS, Egypt	
2.1	Unit of capacitance and inductance at NIS	46
2.2	Type 1660-A Precision Inductance Measuring	40
2.2	Assembly	48
2.2.1	Purpose	48
2.2.2	Description	49
2.2.2.1	Type 1632-A Inductance Bridge	49
2.2.2.1.1	RANGE SWITCH	50
2.2.2.1.2	SENSITIVITY SWITCH	50
2.2.2.2	AC Generator	51
2.2.2.3	Tuned Amplifier and Null Detector	52
2.2.3	Basic Theory of Operation	53
2.2.3.1	SERIES OWEN	53
2.2.3.2	Parallel OWEN	54
2.2. 4	Bridge Setup	55
2.2.4.1	Using of the RANGE Selector	56
2.2.5	Residual Impedances in the Bridge	57
2.2.5.1	Residuals in the unknown arm	57
2.2.5.2	Residuals in the series Owen Bridge	58
2.2.5.3	Residuals in the parallel Owen Bridge	59
2.2.5.4	Reduction of the residual C ₂	59
2.3	Type 1660-A Precision Capacitance	60
2.3	Measuring Assembly	UU
2.3.1	Purpose	60
2.3.2	Description	61
2.3.2.1	Type 1615-A Inductance Bridge	61
2.3.2.2	AC Generator	66
2.3.2.3	Tuned Amplifier and Null Detector	68

2.3.2.4	Standards	69
2.3.3	Bridge Setup	69
2.3.4	Capacitance Balance Controls	7 0
2.3.4.1	Three Terminal Measurements	7 0
2.3.4.1.1	Three-Terminal Coaxial Connections	7 1
2.3.4.1.2	Three-Terminal Binding-Post Connections	72
2.3.4.2	Two-Terminal Binding-Post Connections	73
2.4	Type 7600 Precision LCR Meter	7 4
2.4.1	Purpose	7 4
2.4.2	Description	75
2.4.2.1	Type 7600 Instrument Module	75
2.4.2.1.1	Sine Wave Generator	75
2.4.2.1.2	Voltage Detector Channel	75
2.4.2.1.3	Current Detector Channel	75
2.4.2.1.4	A/D Converter	75
2.4.2.1.5	Digital Signal Processor	7 6
2.4.2.2	Processor Board	7 6
2.4.2.3	Power Supply	7 6
2.4.2.4	Digital I/O Board	7 6
2.4.2.5	Controls and Indicators	7 6
2.4.3	LCR meter Setup	78
2.4.3.1	Zeroing	78
2.4.3.2	Connecting the Device under Test	7 9
	CHAPTER THREE	
	Results Analysis	
3.1	Measurements of Standard Inductances	80
3.1.1	Experimental Study using Type 1660-A Precision Inductance Measuring Assembly	80
3.1.1.1	Balancing Procedures for Precision Inductance Measuring Assembly	80
3.1.1.2	Experimental Results for Precision Inductance Measuring Assembly	82
3.1.2	Experimental Study using 7600 Precision LCR Meter	86
3.1.2.1	Measurement Procedure for 7600 Precision LCR Meter	86
3.1.2.2	Experimental Results for 7600 Precision LCR Meter	88
3.1.3	Analysis of the results for Standard Inductances measurements	92
3.2	Accurate Measurements of Capacitance	92

3.2.1	Experimental Study using Type 1620-A Precision Capacitance Measuring Assembly	92
3.2.1.1	Balancing Procedures for Precision Capacitance Measuring Assembly	92
3.2.1.2	Experimental Results for Precision Capacitance Measuring Assembly	94
3.2.2	Experimental Study using 7600 Precision LCR Meter	99
3.2.2.1	Measurement Procedure for 7600 Precision LCR Meter	99
3.2.2.2	Experimental Results for 7600 Precision LCR Meter	99
3.2.3	Analysis of the results for Standard Inductances measurements	105
	CHAPTER FOUR	
	Uncertainty in Capacitance and Inductance	
	Measurements	
4.1	Introduction	106
4.2	Evaluating of Standard Uncertainty	106
4.2.1	Type (A) Evaluation of Standard Uncertainty	107
4.2.2	Type (B) Evaluation of Standard Uncertainty	108
4.2.3	Combined standard uncertainty	109
4.2.4	Expanded uncertainty	110
4.2.5	Coverage Factor	110
4.3	Summarized Procedure for Evaluating and Expression of Uncertainty	111
4.4	Uncertainty Evaluation for Inductance measurements	111
4.4.1	Using the precision inductance bridge assembly	111
4.4.1.1	Range	111
4.4.1.2	Equipment used	112
4.4.1.3	Type A evaluation of uncertainty	112
4.4.1.4	Type B evaluation of uncertainty	112
4.4.1.5	Uncertainty Budget	113
4.4.1.6	Combined Standard Uncertainty	113
4.4.1.7	Expanded Standard Uncertainty	113
4.4.1.8	Reporting the Final Result	114
4.4.1.9	Final Results for all measured values using Precision Inductance Bridge	114
4.4.2	Using the precision LCR meter	117
4.4.2.1	Range	117

4.4.2.2	Equipment used	117
4.4.2.3	Type A evaluation of uncertainty	117
4.4.2.4	Type B evaluation of uncertainty	117
4.4.2.5	Uncertainty Budget	118
4.4.2.6	Combined Standard Uncertainty	118
4.4.2.7	Expanded Standard Uncertainty	119
4.4.2.8	Reporting the Final Result	119
4.4.2.9	Final Results for all measured values using Precision LCR meter	119
4.5	Uncertainty Evaluation for Capacitance measurements	122
4.5.1	Using the precision Capacitance bridge assembly	122
4.5.1.1	Range	122
4.5.1.2	Equipment used	122
4.5.1.3	Type A evaluation of uncertainty	122
4.5.1.4	Type B evaluation of uncertainty	122
4.5.1.5	Uncertainty Budget	123
4.5.1.6	Combined Standard Uncertainty	123
4.5.1.7	Expanded Standard Uncertainty	123
4.5.1.8	Reporting the Final Result	124
4.5.1.9	Final Results for all measured values using Precision Capacitance Bridge	124
4.5.2	Using the precision LCR meter	127
4.5.2.1	Range	127
4.5.2.2	Equipment used	127
4.5.2.3	Type A evaluation of uncertainty	127
4.5.2.4	Type B evaluation of uncertainty	127
4.5.2.5	Uncertainty Budget	128
4.5.2.6	Combined Standard Uncertainty	128
4.5.2.7	Expanded Standard Uncertainty	129
4.5.2.8	Reporting the Final Result	129
4.5.2.9	Final Results for all measured values using Precision LCR meter	129
	CHAPTER FIVE	_
	nparison between the Most Accurate Metho	
5.1	Comparison of the Accuracy Attitude	132
5.1.1	Accuracy Attitude for Inductance Measurements	132
5.1.1.1	For 10 µH standard inductance	132
5.1.1.2	For 100 µH standard inductance	133
5.1.1.3	For 1 H standard inductance	133
5114	For 10 H standard inductance	133

5.1.1.5	For 1 mH standard decade inductance	134
5.1.1.6	For 10 mH standard decade inductance	134
5.1.1.7	For 100 mH standard decade inductance	134
5.1.1.8	For 1 H standard decade inductance	135
5.1.1.9	For 10 H standard decade inductance	135
E 1 2	Accuracy Attitude for Capacitance	125
5.1.2	Measurements	135
5.1.2.1	For 1 pF standard capacitance	135
5.1.2.2	For 10 pF standard capacitance	136
5.1.2.3	For 100 pF standard capacitance	136
5.1.2.4	For 1000 pF standard capacitance	136
5.1.2.5	For 10 nF standard capacitance	137
5.1.2.6	For 1 µF standard decade capacitance	137
5.1.2.7	For 2 µF standard decade capacitance	137
5.1.2.8	For 3 µF standard decade capacitance	138
5.1.2.9	For 4 µF standard decade capacitance	138
5.1.2.10	For 5 µF standard decade capacitance	138
5.1.2.11	For 6 µF standard decade capacitance	139
5.1.2.12	For 7 µF standard decade capacitance	139
5.1.2.13	For 8 µF standard decade capacitance	140
5.1.2.14	For 9 µF standard decade capacitance	140
5.1.2.15	For 10 µF standard decade capacitance	140
5.2	Comparison of the Uncertainty Attitude	140
5.2.1	Uncertainty Attitude for Inductance	141
5.4.1	measurements	141
5.2.1.1	For 10 µH standard inductance	141
5.2.1.2	For 100 µH standard inductance	142
5.2.1.3	For 1 H standard inductance	143
5.2.1.4	For 10 H standard inductance	144
5.2.1.5	For 1 mH standard decade inductance	145
5.2.1.6	For 10 mH standard decade inductance	146
5.2.1.7	For 100 mH standard decade inductance	147
5.2.1.8	For 1 H standard decade inductance	148
5.2.1.9	For 10 H standard decade inductance	149
5.2.2	Uncertainty Attitude for Capacitance measurements	150
5.2.2.1	For 1 pF standard capacitance	150
5.2.2.2	For 10 pF standard capacitance	150
5.2.2.3	For 100 pF standard capacitance	151
5.2.2.4	For 1000 pF standard capacitance	152
5.2.2.5	For 10 nF standard capacitance	154
5.2.2.6	<u>-</u>	155
5.2.2.0 5.2.2.7	For 1 µF standard decade capacitance	155 156
	For 2 µF standard decade capacitance	
5.2.2.8	For 3 µF standard decade capacitance	157
	xiii	

5.2.2.9	For 4 µF standard decade capacitance	158
5.2.2.10	For 5 µF standard decade capacitance	159
5.2.2.11	For 6 µF standard decade capacitance	160
5.2.2.12	For 7 µF standard decade capacitance	161
5.2.2.13	For 8 µF standard decade capacitance	162
5.2.2.14	For 9 µF standard decade capacitance	163
5.2.2.15	For 10 µF standard decade capacitance	164
Conclusion	n and Future Work	166
References	S	169
Appendix	\mathbf{A}	173
Appendix	В	177
Appendix	C	194
Appendix	D	200
Appendix	\mathbf{E}	208
Appendix	F	214
	List of Tables	
Table (1.1)		14
Table (1.2)		15
Table (1.3)	•	16
	the limiting rms voltage values at	
Table (2.1)	operating frequency below 1 kHz	52
T 11 (2.2)	the limiting rms voltage values at	5 0
Table (2.2)	operating frequency above 1 kHz	52
т.н. (2.2)	Values of R _p C _s and the product of	
Table (2.3)	(R _B *C _A) according to RANGE SWITCH	55
T-11- (2.4)	The value of R_N (L controls) and of C_N (G	
Table (2.4)	controls) per step	55
Table (2.5)	The settings of the RANGE selector	56
	The settings of the RANGE selector that	
Table (2.6)	will permit the maximum precision of the	57
` '	L balance readings	
T-11- (2.7	Front-panel controls and indicators of	(2
Table (2.7)	type 1615-A bridge	63
Table (2.0)	Controls and Connectors of Type 1311-A	67
Table (2.8)	Audio Oscillator	67
Table (2.0)	Controls and Connectors of Type 1232-A	60
Table (2.9)	Tuned Amplifier and Null Detector	68
Table (2.1)	Descriptions and Functions of the	77
Table (2.1)	controls and indicators	77
Table (2.1)	Results of 10 H standard Inductor using	01
Table (3.1)	bridge assembly	82
Table (2.2)	Results of 1H standard Inductor using	02
Table (3.2)	bridge assembly	83

Table (3.3)	Average values of standard Inductors at 50 Hz using bridge assembly	84
T 11 (2.4)	Average values of standard Inductors,	0.4
Table (3.4)	and Standard Decade Inductor at 1 kHz frequency using bridge assembly	84
	Results of 10 H standard Inductor using	
Table (3.5)	LCR meter	88
Table (3.6)	Results of 1 H standard Inductor using LCR meter	89
Table (3.7)	Average values of standard Inductors, and Standard Decade Inductor at 50 Hz frequency using LCR meter	90
	Average values of standard Inductors,	
Table (3.8)	and Standard Decade Inductor at 1 kHz frequency using LCR meter	90
T 11 (2.0)	Results of 1000 pF standard capacitor	0.4
Table (3.9)	using bridge assembly	94
Table (3.10)	Results of 10 µF Decade standard Capacitor using bridge assembly	95
Table (3.11)	Average values of standard Capacitors, and Standard Decade Capacitor at 50 Hz frequency using bridge assembly	96
	Average values of standard Capacitors,	
Table (3.12)	and Standard Decade Capacitor at 1 kHz	97
	frequency using bridge assembly	
Table (3.13)	Results of 1000 pF standard capacitor using LCR meter	100
Table (3.14)	Results of 10 µF Decade standard Capacitor using LCR meter	101
	Average values of standard Capacitors,	
Table (3.15)	and Standard Decade Capacitor at 50 Hz frequency using LCR meter	102
	Average values of standard Capacitors,	
Table (3.16)	and Standard Decade Capacitor at 1 kHz frequency using LCR meter	103
Table (4.1)	Type (A) evaluation using precision Inductance Bridge Assembly	112
	Uncertainty Budget for the 10 H at 1 kHz	
Table (4.2)	using precision Inductance Bridge Assembly	113
	Final Result for the 10 H at 1 kHz using	
Table (4.3)	precision Inductance Bridge Assembly	114
Table (4.4)	Final Result for inductance at 50 Hz using Precision Inductance Bridge	115