

HYBRID BIOLOGICAL REACTOR FOR WASTE WATER TREATMENT

A Thesis Submitted To Faculty of Engineering Ain Shams University for the Fulfillment of the Requirements of M.Sc Degree in Civil Engineering

Prepared by

ENG. MOSTAFA MAMDOUH MOHAMED MOHAMED ABD EL LATIEF

B.Sc. Civil Engineering, June 2006 Faculty of Engineering Ain, Shams University Supervised By

Prof. Dr. MAHMOUD MOHAMED ABD ELAZEEM

Professor of Sanitary& Environment Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt

Dr. MOHAMED ALY AHMED FERGALA

Assoc.Professor of Sanitary& Environment Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt

Dr. MOHAMED SOBHY ABD EL RAHMAN

Assoc. Professor of Sanitary& Environment Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt

HYBRID BIOLOGICAL REACTOR FOR WASTE WATER TREATMENT

A Thesis For

The M.Sc Degree in Civil Engineering

(SANITARY ENGINEERING)

by

ENG. MOSTAFA MAMDOUH MOHAMED MOHAMED ABD EL LATIEF

B.Sc. Civil Engineering, June 2006 Faculty of Engineering Ain, Shams University THESIS APPROVAL

EXAMINERS COMMITTEE

SIGNATURE

Prof. Dr. HAMDY IBRAHIM ALI Professor of Sanitary& Environment Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt	
Prof. Dr. FATMA ABDEL HAMID EL GOHARY Professor of Sanitary& Environment Engineering National Research Center, Cairo, Egypt	
Prof. Dr. Mahmoud Mohamed Abd El Azeem Professor of Sanitary& Environment Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt	
Dr. MOHAMED SOBHY ABD EL RAHMAN Associate Professor of Sanitary& Environment Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt	

Date: 14/01/2013

Dedication

I wish to dedicate this work to whom suffered to educate, prepare, build capacity and help myself to be as I am,

To

MY FATHER

&

MY MOTHER

Also thanks to

MY WIFE

&

MY SISTERS & BROTHERS

For their encouragement and support to complete this work

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M.Sc. In Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works-Sanitary, Faculty of Engineering, Ain Shams University from 2006 to 2013.

No part of the thesis has been submitted for a degree or qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others.

Date / / 20

Signature

Mostafa Mamdouh Mohamed Mohamed Abd El Latief.

ACKNOWLEDGMENT

First of all, Thanks are due to Allah to whom any success in life is attributed.

I would like to express my deepest gratitude and appreciation to **Prof. Dr. Mahmoud Mohamed Abd El Azeem**, Professor of Civil engineering, Ain Shams University, Faculty of Engineering, for his help, guidance, useful suggestions, and encouragement throughout this work.

My special thanks are to **Dr. Mohamed Aly Ahmed Fergala**,
Associate, Professor of Civil engineering, Ain Shams University,
Faculty of Engineering, for his kind supervision, comments and
stimulating discussion, which are gratefully acknowledged and sincerely appreciated.

A special word of thanks is to **Dr. Mohamed Sobhy Abd el Rahman**, Associate Professor of Civil Engineering, Ain Shams

University, Faculty of Engineering, for his kind and friendly assistance, valuable advice, faithful supervision, precious help, constant guidance.

Last but not least, I would like to thank my family for their selfdenial and for sparing no effort in encouraging and supporting me continuously throughout my study.

ABSTRACT

Name: Mostafa Mamdouh Mohamed Mohamed Abd EL LAtief. Title: "Hybrid biological reactor for waste water treatment" FACULTY: Faculty of Engineering Ain, Shams University SPECIALTY: Civil Eng., Public Work, Sanitary Eng.

ABSTRACT

The increasing demands for more stringent water quality effluent standards during the last decades in both developed and developing countries led to the rehabilitation and/or upgrading of many existing wastewater treatment plants in addition to increasing investments in constructing new plants.

In the past few years, many efforts have been made to improve and enhance the efficiency of conventional biological processes dedicated for wastewater treatment coupled with trials to reduce reactor volume and land area requirements. A recent development in this domain is the hybrid system.

Therefore pilot plant experimental program has been conducted in Zenien waste water treatment plant aiming at verifying the enhanced efficiency of adding attached biomass inside the aeration tank.

The experiment's target was as following:

- Analysis and study the results of a pilot plant of the hybrid system and compared it with the conventional activated sludge system.
- Developing a mass balance analysis based on COD to determine the utilization rates of bacteria.

The results proved that the COD removal values reached 85.17%, 84.97% and 80.83% at a hydraulic retention time of 6, 4, and 2.

Corresponding BOD removal values reached 88.52%, 88.32% and 86.94% at a hydraulic retention time of 6, 4, and 2.

Corresponding TSS removal values reached 85.48%, 85.28% and 83.89% at a hydraulic retention time 6, 4, and 2.

The results proved that the system could accommodate the increasing of organic loading rate and was efficient for removal of COD, BOD and TSS.

SUPERVISORS

Prof. Dr. Mahmoud Mohamed Abd El Azeem,

Dr. Mohamed Aly Ahmed Fergala, Dr. Mohamed Sobhy Abd EL Rahman,

TABLE OF CONTENTS

COVER	
THESIS APPROVAL	
DEDICATION	
STATEMENT	
ACKNOWLEDGMENT	
ABSTRACT	
TABLE OF CONTENTS	
LIST OF FIGURES	
LIST OF TABLES	
LIST OF ABBREVIATIONS	
CHAPTER I: INTRODUCTION	
1.1. GENERAL	
1.4. THESIS ORGANIZATION	
CHAPTER II: LITERATURE REVIEW	
CIMI TEX II, ETTERATIONE REVIEW	
2.1. WASTEWATER TREATMENT	
2.2 CONVENTIONAL WASTEWATER	
TREATMENT PROCESS.	
2.2.1 PRELIMINARY TREATMENT	
2.2.2 PRIMARY TREATMENT	
2.2.3 SECONDARY TREATMENT	
2.3 ATTACHED GROWTH REACTOR AND SUSPENDED	
GROWTH REACTOR	
2.4 BIOLOGICAL FILTER	
2.4.1 OPERATION THEROY OF FIXED FILM	
2.5 ACTIVATED SLUDGE PROCESS.	
2.6 THEORY OF ACTIVATED SLUDGE WORKING	
2.6.1 THE PARAMETER AFFECTING THE ACTIVATED SLUDGE	
PROCESS	
2.6.1.1 COMPOSITION AND CHARACTERISTIC OF THE	
RAW SEWAGE	
2.6.1.2 PRETREATMENT	
2.6.1.3 PLANT LOADING	
2.6.1.4 MIXED LIQUOR SUSPENDED SOLID	
2.6.1.5 SOLID RETENTION TIME.	
2.6.1.6 SLUDGE SETTLEABILITY	

2.6.1.7 RECIRCULATION OF SLUDGE	19
2.6.2 SLUDGE PROBLEMS IN THE ACTIVATED SLUDGE	20
PROCESS	20
2.6.2.1 BULKING PROBLEMS	20
2.6.2.2 RISING SLUDGE (DE-NITRIFICATION)	21
2.6.2.3 FILAMENTOUS BULKING	2
2.6.2.4 FOAMING	22
2.6.2.5 PIN-POINT FLOC	22
2.6.2.6 DEFLOCCULATING	23
2.6.2.7 SLIM BULKING	2.
2.7. IMPROVE THE TREATMENT CAPACITY OF ACTIVATED	•
SLUDGE PROCESS BY HYBRID MODIFICATION	2
2.7.1 NECESSITY OF MODIFICATION OF ACTIVATED	2
SLUDGE PROCESS	2
2.7.2 SCOPE OF MODIFICATION OF ACTIVATED	•
SLUDGE PROCESS	2
2.7.3 HYBRID MODIFICATION OF ACTIVATED	_
SLUDGE PROCESS	3
2.7.3.1 BASIC CONCEPT	3
2.7.3.2 OVERVIEW ON SOME DESIGNATED	
HYBRID PROCESSES	3
2.7.3.2.1 LINPOR PROCESS	3
2.7.3.2.2 SUSPENDED CARRIER BIOFILM	
PROCESS	3
2.7.3.2.3 INTEGRATED FIXED FILM TO	_
ACTIVATED SLUDGE SYSTEM	3
2.7.3.3A COMPARATIVE OVERVIEW ON PERFORMANC	1 _
OF VARIOUS HYBRID PROCESSES	5
2.7.3.4 ECONOMICS OF THE HYBRID MODIFICATION	_
OF ACTIVATED SLUDGE PROCESS	6
CHAPTER III: MATERIALS AND METHODS	63-
3.1 GENERAL	6
3.2 RESEARCH PROJECT DESCRIPTION	6
3.2.1 INLET CHAMBER	
3.2.2 SCREENS.	
3.2.3 GRIT CHAMBER	
3.2.4 PRE-AERATION	6
3.2.5 PRIMARY SEDIMENTATION TANK	
	_
3.2.6 ROUGHING FILTER (OUT OF OPERATION)	6
3.2.7 AERATION TANK	6
3.2.8 SECONDARY CLARIFICATION	6
3.3 PILOT PLANT LOCATION	6

3.4 MODEL DESCRIPTION AND OPERATION	
3.4.1 AERATION TANK	72
3.4.2 DIFFUSED AIR SYSTEM	73
3.4.3 SETTLING TANK	75
3.4.4 RECIRCULATED SLUDGE PUMPING	76
3.4.5 PLASTIC NET (MEDIA FOR ATTACHING GROWTH)) 76
3.5 OPERATION OF PILOT PLANT	
3.5.1 FLOW DIAGRAM OF PILOT PLANT	80
3.5.2 SAMPLES COLLECTION POINTS	80
3.5.3 MASS OF BACTERIA COVERING A NET	80
(BIOMASS ATTAVHING GROWTH)	
3.6 WASTE WATER ANALYSIS	81
3.6.1 PH	
3.6.2 CHEMICAL OXYGEN DEMAND (COD)	81
3.6.3 BIOLOGICAL OXGYEN DEMAND	82
3.6.4 TOTAL SUSPENDED SOLIDS (TSS)	82
3.6.5 VOLATILE SUSPENDED SOLIDS	82
3.7 PLAN OF EXPERIMENTAL WORK	83
3.7.1 RUN NO.I RIPPING PHASE	84
3.7.2 RUN NO. II ORDINARY PHASE	
3.7.3 RUN NO. III	85
3.7.4 RUN NO. IV	85
3.7.5 RUN NO. V	86
5.7.5 ROW 10.0.	00
	87-136
CHAPTER IV: RESULTS&DISSCUTION 4.1 GENERAL	87-136
CHAPTER IV: RESULTS&DISSCUTION 4.1 GENERAL 4.2 CALCULATIONS OF REMOVAL EFFICIENCY	87-136 87 88
CHAPTER IV: RESULTS&DISSCUTION 4.1 GENERAL 4.2 CALCULATIONS OF REMOVAL EFFICIENCY 4.3 THE MEASURED PARAMETERS	87-136 87 88 89
CHAPTER IV: RESULTS&DISSCUTION 4.1 GENERAL 4.2 CALCULATIONS OF REMOVAL EFFICIENCY 4.3 THE MEASURED PARAMETERS 4.3.1 HYDRAULIC RETENTION TIME	87-136 87 88 89 89
CHAPTER IV: RESULTS&DISSCUTION 4.1 GENERAL 4.2 CALCULATIONS OF REMOVAL EFFICIENCY 4.3 THE MEASURED PARAMETERS 4.3.1 HYDRAULIC RETENTION TIME 4.3.2 ORGANIC LOADING	87-136 87 88 89 89 89
CHAPTER IV: RESULTS&DISSCUTION 4.1 GENERAL 4.2 CALCULATIONS OF REMOVAL EFFICIENCY 4.3 THE MEASURED PARAMETERS 4.3.1 HYDRAULIC RETENTION TIME 4.3.2 ORGANIC LOADING 4.3.3 TOTAL BIOMASS (SUSPENDED &ATTACHED)	87-136 87 88 89 89 89 89
CHAPTER IV: RESULTS&DISSCUTION 4.1 GENERAL 4.2 CALCULATIONS OF REMOVAL EFFICIENCY 4.3 THE MEASURED PARAMETERS 4.3.1 HYDRAULIC RETENTION TIME 4.3.2 ORGANIC LOADING 4.3.3 TOTAL BIOMASS (SUSPENDED &ATTACHED) 4.3.4 SLUDGE LOADING	87-136 87 88 89 89 89 90 90
4.1 GENERAL 4.2 CALCULATIONS OF REMOVAL EFFICIENCY 4.3 THE MEASURED PARAMETERS 4.3.1 HYDRAULIC RETENTION TIME 4.3.2 ORGANIC LOADING 4.3.3 TOTAL BIOMASS (SUSPENDED &ATTACHED) 4.3.4 SLUDGE LOADING 4.4 RUN NO.1	87-136 87 88 89 89 89 90 90 91
4.1 GENERAL 4.2 CALCULATIONS OF REMOVAL EFFICIENCY 4.3 THE MEASURED PARAMETERS 4.3.1 HYDRAULIC RETENTION TIME 4.3.2 ORGANIC LOADING 4.3.3 TOTAL BIOMASS (SUSPENDED &ATTACHED) 4.3.4 SLUDGE LOADING 4.4 RUN NO.1 4.4.1 RUN NO.1 RESULTS	87-136 87 88 89 89 89 90 90 91
CHAPTER IV: RESULTS&DISSCUTION 4.1 GENERAL 4.2 CALCULATIONS OF REMOVAL EFFICIENCY 4.3 THE MEASURED PARAMETERS 4.3.1 HYDRAULIC RETENTION TIME 4.3.2 ORGANIC LOADING 4.3.3 TOTAL BIOMASS (SUSPENDED &ATTACHED) 4.3.4 SLUDGE LOADING 4.4 RUN NO.1 4.4.1 RUN NO.1 RESULTS 4.4.1.1 MLSS&MLVSS	87-136 87 88 89 89 89 90 90 91 92 92
CHAPTER IV: RESULTS&DISSCUTION 4.1 GENERAL 4.2 CALCULATIONS OF REMOVAL EFFICIENCY. 4.3 THE MEASURED PARAMETERS 4.3.1 HYDRAULIC RETENTION TIME. 4.3.2 ORGANIC LOADING. 4.3.3 TOTAL BIOMASS (SUSPENDED &ATTACHED) 4.3.4 SLUDGE LOADING. 4.4 RUN NO.1 4.4.1 RUN NO.1 RESULTS 4.4.1.1 MLSS&MLVSS 4.4.1.2 F/M RATIO.	87-136 87 88 89 89 89 90 90 91 92 92 92
CHAPTER IV: RESULTS&DISSCUTION 4.1 GENERAL 4.2 CALCULATIONS OF REMOVAL EFFICIENCY 4.3 THE MEASURED PARAMETERS 4.3.1 HYDRAULIC RETENTION TIME 4.3.2 ORGANIC LOADING 4.3.3 TOTAL BIOMASS (SUSPENDED &ATTACHED) 4.3.4 SLUDGE LOADING 4.4 RUN NO.1 4.4.1 RUN NO.1 RESULTS 4.4.1.1 MLSS&MLVSS 4.4.1.2 F/M RATIO 4.4.1.3 DO	87-136 87 88 89 89 90 90 91 92 92 92
CHAPTER IV: RESULTS&DISSCUTION 4.1 GENERAL 4.2 CALCULATIONS OF REMOVAL EFFICIENCY. 4.3 THE MEASURED PARAMETERS 4.3.1 HYDRAULIC RETENTION TIME. 4.3.2 ORGANIC LOADING. 4.3.3 TOTAL BIOMASS (SUSPENDED &ATTACHED) 4.3.4 SLUDGE LOADING. 4.4 RUN NO.1 4.4.1 RUN NO.1 RESULTS 4.4.1.1 MLSS&MLVSS 4.4.1.2 F/M RATIO.	87-136 87 88 89 89 90 91 92 92 92 92 92
CHAPTER IV: RESULTS&DISSCUTION 4.1 GENERAL 4.2 CALCULATIONS OF REMOVAL EFFICIENCY. 4.3 THE MEASURED PARAMETERS. 4.3.1 HYDRAULIC RETENTION TIME. 4.3.2 ORGANIC LOADING. 4.3.3 TOTAL BIOMASS (SUSPENDED &ATTACHED) 4.3.4 SLUDGE LOADING. 4.4 RUN NO.1 4.4.1 RUN NO.1 RESULTS. 4.4.1.1 MLSS&MLVSS 4.4.1.2 F/M RATIO. 4.4.1.3 DO. 4.4.1.4 PH. 4.4.1.5 ALK	87-136 87 88 89 89 90 90 91 92 92 92 92 92
CHAPTER IV: RESULTS&DISSCUTION 4.1 GENERAL 4.2 CALCULATIONS OF REMOVAL EFFICIENCY. 4.3 THE MEASURED PARAMETERS 4.3.1 HYDRAULIC RETENTION TIME. 4.3.2 ORGANIC LOADING. 4.3.3 TOTAL BIOMASS (SUSPENDED &ATTACHED) 4.3.4 SLUDGE LOADING. 4.4 RUN NO.1 4.4.1 RUN NO.1 RESULTS. 4.4.1.1 MLSS&MLVSS 4.4.1.2 F/M RATIO. 4.4.1.3 DO. 4.4.1.4 PH. 4.4.1.5 ALK 4.4.1.6 TEMP.	87-136 87 88 89 89 90 91 92 92 92 92 92
CHAPTER IV: RESULTS&DISSCUTION 4.1 GENERAL 4.2 CALCULATIONS OF REMOVAL EFFICIENCY 4.3 THE MEASURED PARAMETERS 4.3.1 HYDRAULIC RETENTION TIME 4.3.2 ORGANIC LOADING 4.3.3 TOTAL BIOMASS (SUSPENDED &ATTACHED) 4.3.4 SLUDGE LOADING 4.4 RUN NO.1 4.4.1 RUN NO.1 RESULTS 4.4.1.1 MLSS&MLVSS 4.4.1.2 F/M RATIO 4.4.1.3 DO 4.4.1.4 PH 4.4.1.5 ALK 4.4.1.6 TEMP 4.4.1.7 COD RESULTS	87-136 87 88 89 89 90 90 91 92 92 92 92 92 92 92 92 92
CHAPTER IV: RESULTS&DISSCUTION 4.1 GENERAL 4.2 CALCULATIONS OF REMOVAL EFFICIENCY. 4.3 THE MEASURED PARAMETERS 4.3.1 HYDRAULIC RETENTION TIME. 4.3.2 ORGANIC LOADING. 4.3.3 TOTAL BIOMASS (SUSPENDED &ATTACHED) 4.3.4 SLUDGE LOADING. 4.4 RUN NO.1 4.4.1 RUN NO.1 RESULTS. 4.4.1.1 MLSS&MLVSS 4.4.1.2 F/M RATIO. 4.4.1.3 DO. 4.4.1.4 PH. 4.4.1.5 ALK 4.4.1.6 TEMP.	87-136 87 88 89 89 90 91 92 92 92 92 92 92 93 93

4.4.1.10	VSS RESULTS. 93
	RUN NO.1 RESULTS DISCUSSION
4.5.1 RUI	N NO.2 RESULTS 99
4.5.1.1	
4.5.1.2	F/M RATIO
4.5.1.3	DO
	PH
	ALK
4.5.1.6	
4.5.1.7	
4.5.1.8	BOD RESULTS
	TSS RESULTS 10
	VSS RESULTS 10
	RUN NO.2 RESULTS DISCUSSION 103
	N NO.3 RESULTS 100
	MLSS&MLVSS 100
	BVS,TVS
	F/M RATIO
	DO
	PH
	ALK
4.6.1.7	
4.6.1.8	
4.6.1.9	BOD RESULTS 10'
	TSS RESULTS 108
	VSS RESULTS. 108
	RUN NO.3 RESULTS DISCUSSION 103
	N NO.4 RESULTS 114
	MLSS&MLVSS114
	BVS,TVS114
	F/M RATIO115
4.7.1.4	DO 115
	PH11:
	ALK115
	TEMP. 11:
4.7.1.8	COD RESULTS. 115
	BOD RESULTS 110
	TSS ESULTS. 110
	VSS RESULTS. 110
	RUN NO.4 RESULTS DISCUSSION
18 DIII	

4.8.1 RUN NO.5 RESULTS	122
4.8.1.1 MLSS&MLVSS	122
4.8.1.2 BVS,TVS	
4.8.1.3 F/M RATIO	123
4.8.1.4 DO	123
4.8.1.5 PH	123
4.8.1.6 ALK	123
4.8.1.7 TEMP	123
4.8.1.8 COD RESULTS	123
4.8.1.9 BOD RESULTS	124
4.8.1.10 TSS RESULTS	124
4.8.1.11 VSS RESULTS	
4.8.1.12 RUN NO.5 RESULTS DISCUSSION	124
4.9 GENERAL DISCUSSION ON	130
PHYSICAL EXPERIMENT RESULTS	130
4.9.1 COD DISCUSSION	130
4.9.2 BOD DISCUSSION	131
4.9.3 TSS DISCUSSION	132
4.9.4 VSS DISCUSSION	
4.10 MASS BALANCE ANALYSIS OF TOTAL EXPERMENT	
4.10.1 MASS BALANCE DISCUSSION	135
CHAPTER V: CONCLUSION	137-139
5.1 GENERAL	137
5.2 CONCLUSIONS.	
5.3 RECOMMENDATIONS	
REFERENCES	140-145
APPENDICES	
APPENDIX 1	A-1
APPENDIX 2	
APPENDIX 3	
APPENDIX 4	A-4
APPENDIX 5	A-5

LIST OF FIGURES

Figure	Pa
CHAPTER II: LITERATURE REVIEW	4-
Figure (2/1) Biological Film Composition	9
Figure (2/2) Conventional Activated Sludge process	1
Figure (2/3) Schematic diagram of hybrid activated sludge process	3
Figure (2/4) Schematic arrangement of typical LINPOR-CN system (Adapted	
from Gilligan and Morper 1999)	3
Figure (2/5) Schematic diagram of Freising LINPOR-CN process expansion	
(Adapted from Gilligan and Morper 1999)	3
Figure (2/6) SCBP in form of Kaldnes moving bed system accommodated in the same ASP reactor	•
Figure (2/7) SCBP in form of Kaldnes moving bed system separately present after the ASP reactor	,
Figure(2/8) Schematic diagram of typical IFAS System	4
Figure (2/9) Porous plastic foam cubes utilized as biomass carriers in Sponge processes (Morper 1999)	4
Figure (2/10) Polypropylene Finned Media Type	4
Modules Installed In A Bioreactor at The Waterdown, Ontario WWTP (Pehrson and McDowell 2002Schematic arrangement of typical LINPOR-CN system (Adapted from Gilligan and Morper 1999)	:
Figure (2/12) Growing of biomass on AccuWeb fixed media (Hubbell and	
McDowell 2003)	
Figure (2/13) AccGrid PVC Rectangular Cell Type (GEBARA 1999)	;
CHAPTER III: MATERIALS AND METHODS	63
Figure (3/1) Zenien Wastewater Treatment Plant	(
Figure (3/2) the general layout of Zenien WWTP	
Figure (3/3) flow diagram of wastewater through the plant	
Figure (3/4) the model location beside the primary sedimentation tank	,
Figure (3/5) AutoCAD elevation, plan	,
Figure (3/6) Pilot plant photograph	
Figure (3/7) Aeration tank in plant units	
Figure (3/8) photographs of aeration system in aeration tank	
Figure (3/9) photographs of aeration pipe along the aeration tank	
Figure (3/10) photographs of final settling tank	

Figure (3/11) photographs of final settling tank in the lab	76
Figure (3/12) Photograph of plastic media placed in the aeration tank	79
CHAPTER IV: RESULTS&DISSCUTION	87-136
Figure (4/1) Influent and effluent of COD Run 1	95
Figure (4/2) %removal of COD Run 1	95
Figure (4/3) Influent and effluent of BOD Run 1	96
Figure (4/4) %removal of BOD Run 1	96
Figure (4/5) Influent and effluent of TSS Run 1	97
Figure (4/6) %removal of TSS Run 1	97
Figure (4/7) Influent and effluent of VSS Run 1	98
Figure (4/8) %removal of VSS Run 1	98
Figure (4/9) Influent and effluent of COD Run 2	102
Figure (4/10) %removal of COD Run2	102
Figure (4/11) Influent and effluent of BOD Run 2	103
Figure (4/12) %removal of BOD Run 2	103
Figure (4/13) Influent and effluent of TSS Run 2	104
Figure (4/14) %removal of TSS Run 2	104
Figure (4/15) Influent and effluent of VSS Run 2	105
Figure (4/16) %removal of VSS Run 2	105
Figure (4/17) Influent and effluent of COD Run 3	110
Figure (4/18) %removal of COD Run3	110
Figure (4/19) Influent and effluent of BOD Run 3	111
Figure (4/20) % removal of BOD Run 3	111
Figure (4/21) Influent and effluent of TSS Run 3	112
Figure (4/22) %removal of TSS Run 3	112
Figure (4/23) Influent and effluent of VSS Run 3	113
Figure (4/24) %removal of VSS Run 3	113
Figure (4/25) Influent and effluent of COD Run 4	118
Figure (4/26) %removal of COD Run4	118
Figure (4/27) Influent and effluent of BOD Run 4	119
Figure (4/28) % removal of BOD Run 4	119
Figure (4/29) Influent and effluent of TSS Run 4	120
Figure (4/30) % removal of TSS Run 4	120
Figure (4/31) Influent and effluent of VSS Run 4	121
Figure (4/32) % removal of VSS Run 4	121
Figure (4/33) Influent and effluent of COD Run 5	126
Figure (4/34) %removal of COD Run5	126
Figure (4/35) Influent and effluent of BOD Run 5	127
Figure (4/36) % removal of BOD Run 5	127
Figure (4/37) Influent and effluent of TSS Run 5	128
Figure (4/38) %removal of TSS Run 5	128

Figure (4/39) Influent and effluent of VSS Run 5	129
Figure (4/40) %removal of VSS Run 5	129
Figure (4/41)% removal of COD with different runs	130
Figure (4/42) %removal of BOD with different runs	131
Figure (4/43) %removal of TSS with different runs	132
Figure (4/44) %removal of VSS with different runs	133

LIST OF TABLES

Table	Page
CHAPTER II: LITERATURE REVIEW	4-62
Table (2/1) Applications of IFAS system and the design	
consideration (Morper 1999)	42
Table (2/2) dispersed types of IFAS system	43
Table (2/3) Fixed-in-place types of IFAS system	44
Table (2/4) Comparative performance of various hybrid	
systems	60
CHAPTER III: MATERIALS AND METHODS	63-86
Table (3/1) the experimental work program CHAPTER IV: RESULTS	83
CHAITERIV. RESULTS	87-136
Table (4/1) the COD mass balance for each run	134
Table (4/2) The MIVSS&VSS mass values	135

.