

Recent Advances in Imaging of The Arterial System of The Head and Neck

Essay

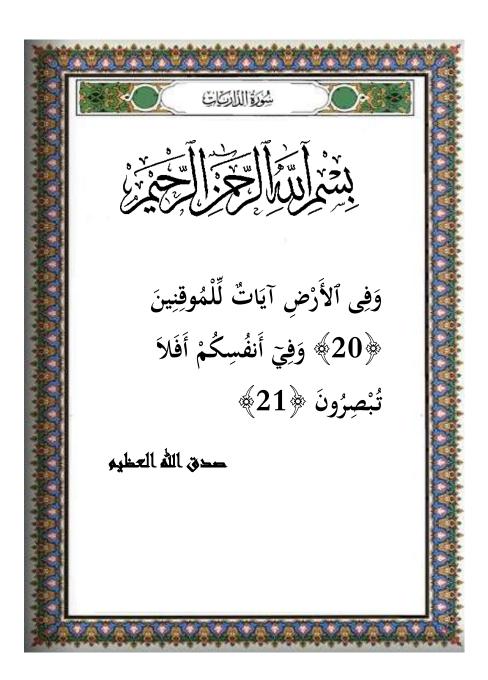
Submitted For Partial Fulfillment of Master Degree in **Anatomy and Embryology**

Presented by

Mostafa Mohammed Refat Hussein Mahran M.B., B.CH.

Supervised by

Prof. Dr. Shahira Youssef Mikheal


Professor of Anatomy
Faculty of Medicine - Ain Shams University

Prof. Dr. Hassan Mostafa Serry

Professor of Anatomy
Faculty of Medicine – Ain Shams University

Prof. Dr. Azza Kamal Abu Hussein

Professor of Anatomy Faculty of Medicine - Ain Shams University

To my father

Prof. Dr. Mohammed Refat Hussein Mahran

To my mother

Prof. Dr. Sanaa Mohammed Shafik Saleh Atta

To my lovely wife

Dr. Ghada Nabil Anrvar Garvdat

To Sara and Seif

It gives me a great pleasure to express my deepest gratitude and appreciation to Prof. Dr. Shahira Youssef Mikheal, Professor of Anatomy, Faculty of Medicine, Ain Shams University, for the great support and encouragement she gave me and also for granting me the honor of working under her supervision.

Deep thanks and indebtedness are also forwarded to **Prof. Dr. Hassan Mostafa Serry**, Professor of Anatomy, Faculty of Medicine, Ain Shams University, for his faithful advices, sincere supervision, precious help and continuous support throughout this work.

I would like to express my sincere appreciation to Prof. Dr. Azza Kamal Abu Hussein, Professor of Anatomy, Faculty of Medicine, Ain Shams University, for her valuable supervision, generosity and continuous guidance throughout this work.

Much thanks and gratitude are also forwarded to Dr. Ahmed Mohamed Desouky, Lecturer of Anatomy, Faculty of Medicine, Ain Shams University, for providing me with valuable resources that helped markedly in performing this work.

Mostafa Mohammed Refat Hussein Mahran

Table of Contents

	Page
List of Abbreviations	ii
List of Figures	iv
Introduction	1
CHAPTER 1: Anatomy of the arterial system of the head and neck	4
CHAPTER 2: Ultrasound	43
CHAPTER 3: Catheter Based Angiography	66
CHAPTER 4: Computed Tomography Angiography	92
CHAPTER 5: Magnetic Resonance Angiography	113
English Summary	141
References	144
Arabic Summary	

List of Abbreviations

2D	2-Dimentional
3D	3-Dimentional
ACA	Anterior Cerebral Artery
Aca	Anterior communicating artery
AICA	Anterior inferior cerebellar artery
AV	Arterio-Venous
AVM's	Arterio-Venous malformations
BA	Basilar artery
B-mode	Brightness mode
CCA	Common carotid artery
CEMRA	Contrast enhanced magnetic resonance
	Angiography
CMPR	Curved multiplannar reformation
CN	Cranial nerve
CRA	Central Retinal artery
CTA	Computed tomography angiography
CV	Cervical vertebra
DDB	Deep Descending branch
DSA	Digital subtraction angiography
DSCT	Spiral dual energy computed tomography
ECA	External carotid artery
EC-IC	Extra cranial –Intracranial
EDV	End diastolic volume
FR	French scale
ICA	Internal carotid artery
IV	Intravenous
LVA	Left vertebral artery
MCA	Middle cerebral artery
MDCTA	Multidetector computed tomography
	Angiography

List of Abbreviations (Cont.)

MIP	Maximal intensity projection
M-mode	Motion mode
MPR	Multiplannar reformation
MRA	Magnetic Resonance Angiography
MRI	Magnetic Resonance imaging
OA	Occipital artery
PCA	Posterior communicating artery
Pc	Phase contrast
Pcoa	Posterior communicating artery
PICA	Posterior inferior cerebellar artery
PSV	Peak systolic volume
PW	Pulsed wave
RAH	Recurrent artery of Heubner
ROI	Region of interest
RVA	Right vertebral artery
SAH	Subarachnoid hemorrhage
SCA	Subclavian artery
SDB	Superficial descending branch
STA	Superficial temporal artery
T	Tesla
TIA	Transient ischemic attack
TOF	Time of flight
VA	Vertebral artery
VR	Volume rendering

List of Figures

Fig.	Title	Page
1	A lateral view of the neck showing the left common carotid artery and its bifurcation.	5
2	An illustration showing the branches of external carotid artery.	9
3	An illustration showing variation in levels of bifurcation of the common carotid artery.	16
4	A photograph showing high origin of right superior thyroid artery.	16
5	An illustration showing the course of internal carotid till it reaches the skull.	17
6	An illustration showing internal carotid as it enters the brain and some of its branches.	18
7	A graphic illustration showing the ophthalmic artery.	22
8	An illustration showing the orbital distribution of the ophthalmic artery	23
9	A graphic illustration showing the anterior cerebral artery and its branches.	25
10	A graphic illustration showing the middle cerebral artery arising from the internal carotid artery.	27
11	A graphic illustration showing the segments and branches of middle cerebral artery.	28
12	An illustration showing the subclavian artery and its branches.	30
	An illustration showing the branches of the subclavian artery.	
14	A photograph showing the loops of the 2nd and 3rd parts of the vertebral artery.	35
15	An illustration showing the level of entry of vertebral artery into the foramina transversaria.	36
16	A graphic illustration showing the union of the 2 vertebral arteries and the formation of basilar artery.	37

Fig.	Title	Page
17	A graphic illustration showing the posterior cerebral artery.	40
18	A graphic illustration showing the circle of Willis.	41
19	A photograph of a cadaver showing the arteries of the base of the brain and the circulus arteriosus.	42
20	A photograph showing the ultrasound machine.	45
21	A B-mode image, showing stenosis of the internal carotid artery.	
22	A normal M-mode image showing the common carotid artery.	47
23	A normal color coded Doppler showing the common carotid artery and the carotid bulb.	49
24	A color coded Doppler image of the carotid bifurcation, showing a minimal stenosis.	
25	A pulsed wave Doppler image showing normal right common carotid artery.	50
26	A normal power Doppler image showing the common carotid artery with a proximal ECA branch.	50
27	A power Doppler image, showing longitudinal image of the normal carotid artery and its bifurcation.	55
28 (A,B,C)	A diagram and two photographs showing the position of the probe on the patient and the waveform obtained.	
29	A Color Doppler image showing a high grade stenosis is shown just distal to the bifurcation of the common carotid artery.	
30	A Color Doppler image showing an internal carotid artery aneurysm.	59

Fig.	Title	Page
31	A normal color Doppler image of the vertebral artery and vein.	63
32	A photograph of a patient, showing the position of the probe used to assess the vertebral artery.	63
33	A color Doppler image showing vertebral artery stenosis.	65
34	Percutaneous catheterization techniques	72
35	A photograph showing examples of catheters in common use.	76
36	A cerebral angiogram with the use of contrast material and application of DSA.	77
37	A common carotid angiogram showing the normal extracranial ICA.	80
38	A carotid angiogram which shows the superior thyroid artery and its numerous branches.	81
39	A carotid angiogram image showing a high grade stenosis of the distal common carotid artery just before the bifurcation.	
40	A carotid angiogram image showing a saccular aneurysm at the carotid bulb.	82
41	A cerebral angiogram showing the lateral view of ECA and its branches.	83
42	A cerebral angiogram showing early (A) and late (B) arterial phase, lateral view from a selective occipital artery angiogram.	84
43	A lateral view of selective external carotid artery angiography showing particularly well its terminal branches	84
44	A lateral view of an external carotid angiogram which shows the maxillary artery branches.	85

	List of Figures (cont.)		
Fig.	Title	Page	
45	A cerebral angiogram showing the different parts	86	
(a,b)	of internal carotid artery within the skull.		
46	A carotid angiogram image showing an	87	
	intermediate grade stenosis at the origin of the		
	internal carotid artery.		
47	A carotid angiogram image showing a 60-80%	88	
	stenosis at the origin of the internal carotid artery.		
48	A carotid angiogram image showing a high grade	88	
	stenosis of the internal carotid artery.		
49	A carotid angiogram image showing a complete	89	
	internal carotid artery occlusion.		
50	A vertebral artery angiogram with injection of	90	
(a,b)			
51	A vertebral artery angiogram showing a stenosis at	91	
	the origin of the vertebral artery.		
52	A photograph showing the multidetector row	95	
	computed tomography angiography machine.		
53	A photograph showing a. the CT machine b.	96	
	infusion set used in contrast medium injection.	0.5	
54	A CTA image with 3D reconstruction showing a	97	
	normal carotid artery bifurcation.		
55	A CTA image with 3D reconstruction showing the	98	
	normal common carotid artery with carotid artery		
	bifurcation		
56	A CTA image with 3D reconstruction showing the	99	
	ophthalmic division of the ICA.		
57	A CTA image with 3D reconstruction showing the	99	
	basilar artery and its bifurcation.		
58	A CTA image with 3D reconstruction showing the	100	
	vertebral artery and its parts within the foramina of		
	the vertebrae.		

Fig.	Title	Page
59	A CT angiogram image showing both common and	100
(a,b)	internal carotid arteries with evidence of a degree of	
	stenosis.	
60	A carotid angiogram image with DSA and a CT	103
(a,b)	angiogram showing the course of both internal	
	carotid arteries.	
61	A selective carotid angiogram with DSA and CT	103
(a,b)	angiogram showing the presence of severe stenosis	
	at origin of internal carotid arteries.	
62	A CT angiogram image showing stenosis with	104
	heavy calcifications, shown by MIP.	
63	A cerebral angiogram with 3d reconstruction image	106
	showing intracranial vasculature.	
64	A CTA with 3D reconstruction image showing the	107
	presence of accessory middle cerebral artery.	
65	A CTA with 3D reconstruction image showing	108
(a,b)	unruptured anterior communicating artery	
	aneurysm.	100
66	A CTA with 3D reconstruction image showing an	109
	unruptured giant aneurysm of the left vertebral	
	artery.	110
67	A vertebral artery angiogram with digital	110
	subtraction technique showing the left vertebral	
	artery with severe stenosis and segmental dilatation	
60	in intracranial segment.	112
68	A diagrammatic illustration and a CT angiogram	112
	showing the composition of an arteriovenous malformation.	
69	A photograph showing the MRA machine setting	114
(a,b)	11 photograph showing the MIXA machine setting	114
70	A MRA image with 3D reconstruction showing the	116
, 0	right subclavian artery.	110
	right buochavian artery.	

Fig.	Title	Page
71	A MRA image showing normal variation	117
	illustrating separate origin of the left vertebral	
72	artery. A CEMPA image of a normal individual shows the	118
12	A CEMRA image of a normal individual shows the neck vessels from the aortic arch to the skull base.	110
73	A MRA image of the left carotid and left vertebral	119
	arteries.	11)
74	A MRA image showing mild degrees of stenosis at	124
(a,b)	The common carotid artery bifurcation using	127
(4,5)	different techniques.	
75	A CEMRA image with contrast showing right	125
(a,b)		
76	A MRA image showing acute traumatic dissection	127
	of the right internal carotid artery.	
77	A CEMRA image of a thyroid tumor at the base of	128
(a,b,c)	the right neck and extending into the superior	
	mediastinum.	
78	A schematic representation of the internal carotid	130
	artery, its bifurcation and the anterior cerebral	
	artery with its cortical branches.	
79	A normal 3D TOF MRA of internal carotid artery	131
	and the anterior and middle cerebral arteries.	101
80	A schematic representation of the vertebro-basilar	131
01	circulation.	100
81	A 3D TOF MRA(Axial view) image showing both	132
	ophthalmic arteries and posterior communicating	
92	arteries are well defined.	122
82	A schematic representation of the complete circle of Willis.	132
83	A 3D TOF MRA image showing the origin and	133
03	normal course of the right anterior choroidal artery	133
	normal course of the fight affector chorolaal aftery	

Fig.	Title	Page
84	A normal 3D TOF MRA showing the posterior	133
	circulation.	
85	A normal 3D TOF MRA of the posterior circulation	134
	and of both AICA and SCA.	
86	A normal 3D TOF MRA image showing the	135
	complete circle of Willis	
87	Four MRA images showing: a severely stenosed	137
	left MCA.	
88	A 3D TOF MRA image showing a small aneurysm	138
	of the right middle cerebral artery bifurcation.	
89	A CEMRA showing a large aneurysm of right	138
	internal carotid artery showing the malformation.	
90	A CEMRA image showing an AVM nidus with	140
	feeders.	

Introduction

Visualization of the arteries of the head and neck has been the concern of radiologists since lesions affecting them may lead to severe disabilities. The development of imaging techniques provided a full range of vision and enough data required to give a full description of the arterial status and the rate of blood flow. This facilitated the early diagnosis of some of the major vascular diseases such as atherosclerosis of carotid artery, carotid artery stenosis, stroke and cerebral infarcts (*Patel*, 2005).

The conventional ultrasound is the safest modality utilized in visualization of arteries of the head and neck. It can be enhanced with Doppler measurement, to assess the patency of the vessel wall as well as the direction and velocity of blood flow within the vessel. However, the main disadvantage of ultrasound is that it may give false readings if used in a bony or a fatty area (*Robertson and Baker*, 2001).

The gold standard technique in visualization of arteries is catheter based angiography which is operated by direct injection of a contrast material into aortic arch or selectively into either the carotid or the vertebral arteries, followed by its visualization by X-ray. This technique was modified by adding the digital subtraction to eliminate the overlying bone and produce a clear image. The disadvantages of the use of catheter include its invasiveness and the possibility of rupturing aneurysm or detaching a thrombus (*Hiroshima et al.*, 2001).

The above mentioned disadvantages of ultrasound and catheter angiography made it crucial to look for a new technique that can be used in evaluation of the blood flow in a minimally invasive way and capable of producing a clear image if used in a bony cavity such as the skull. This was accomplished by making use of Computed Tomography