

Preparation And Analysis of Solid Solutions Used As Pigments

Ву

Nehad Hamdi Ali Abd-El Hameed

B.sc., Chemistry, Zoology, Faculty of Science,
Ain Shams University, 1998

For the Award of

MSc. degree in Chemistry

under the supervision of

::Dr.Wagiha Hamid Mahmoud

Prof. Dr. Abdel- Sattar S. Hamad Elgazwy

hissor of Analytical Chemistry,

Professor of Organic Chemistry, Faculty of Science, Ain Shams University

alyaf Science , Ain Shams University

Prof. Dr Mohamed M. Schm

Prof. of Physical Chemistry , National Research Center , Cairo

Chemistry Department – Faculty of Science

Ain – Shams University

Analysis of solid solutions used as pigments

Ву

Nehad hamdi Ali Abd-El Hamid

B.sc in chemistry,zoology,faculty of science,

Ain shams university, 199A

this thesis master degree in analysis chemistry has been approved by

rof.Dr.wagiha hamid mahmoud

Prof. of Analysis Chemistry, Faculty of Scince,

Ain Shams University

prof.DrAbdelsattar SAYED ALI hamid Algazawey

prof. of organic chemistry, faculty of scince,

Ain shams university

Prof. Dr Mhammed M. Selim

Prof. of PhysicalChemistry ,National Research Center ,Cairo

Approval sheet

Analysis Of Solid Solutions Used As Pigments

By

Nehad Hamdi Ali Abd-El Hamid

B.Sc., Chemistry, Zoology, Faculty Of Science,

Ain Shams University, 199A

This Thesis Master Degree In Analysis Chemistry has been approved by

Prof.Dr.Wagiha Hamid Mahmoud

prof. of Analysis Chemistry, Faculty Of Science,

Ain Shams University

Prof.Dr.Abdel Sattar Hamad Algazwey

prof. of Organic Chemistry, Faculty Of Scince,

Ain -Shams University

Prof. Dr. Mohammed M.Selim

Prof. of Physical Chemistry ,National Research Center ,Cairo

Chemistry Department-Faculty Of Scinence
Ain-Shams University

Abstract

The aim of this work is not only the synthesis of ceramic pigment with spinel structure using low energy and inexpensive minerals but also throw some light on the relations between the structure and the color of obtained pigment.

The most commonly used coloring constituents in ceramic systems characterized by an incomplete d shell, particularly V, Cr, Mn, Fe, Co, Ni and Cu.

In this study color pigments were formed by tow methods ceramic method and sol-gel method.

Ceramic method used to prepare simple spinels of Ni,Co and Ni starting from a mixture of M(NO_r)_rM=Ni,Co,Mg or Ni and aluminum chloride where calcinations at '···°Cfor "hr.three components spinels also prepared by adding MgCl_ror Mg(OH)_r in different molar ratio to M(NO_r)_r M=Ni,Co,Mg or Ni to aluminum chloride where calcinations at '···°C for "hr. gel method used to prepare simple spinels of Ni,Co,Mg and Cu starting from a mixture of M(NO_r)_rM=Ni,Co,Mg or Ni and aluminum chloride using medium ethylene glycol, calcinations at '··°Cfor 'hr.mixed spinels also prepared in the sam way where CuNiAl_rO_£, CuCoAl_rO_£, NiCoAl_rO_£prepared using tow solvents a medium (ethylene glycol and polyproplyne glycol).

The phase composition and microstructure characterization of obtained pigments were evaluated by X-ray diffraction, and transmission electron microscope. the results indicated that all produced powder are in nanometer range and high hidden for metallic surfaces when it used as pigments for coating metallic surfaces.

Some of the produced powder are used as pigments where it mixed with alkyd and diluted with suitable organic solvent and applied as coating materials on metallic surfaces.

Key words :spinel ,pigment, CuNiAl₇O₄, CuCoAl₇O₄, NiCoAl₇O₄, CoAl₇O₄, NiAl₇O, CuAl₇O

CHAPTER \.INTRODUCTION

, Spinel Structure
Y, Y, Y, Normal Spinel
1,1,1,7 Inverse Spinels
CHAPTER Y
Literature Survey
CHAPTER *
MATERIALS AND METHODS
۳,۱. Materials of work
۳,۲. Powder preparation
۳,۲,۱. Preparation Of Spinels By Ceramic Method
٣,٢,١,١ simple spinels
T,T,1,7 Three components spinels MgCl ₇ as source for Mg
٣,٢,١,٣ Three components spinels using Mg(OH), as source for Mg-
T, T. T. Spinels Prepared Using Gel Method
٣,٢,٢.\ Mixed spinels
٣, ٢, ٢, ٢ Simple Spinels

۳٫۳. Characterization Techniques
۳,۳,۱ x-ray Diffraction Analysis(XRD)
۳,۳,۲ Transmission Electron Microscope Analysis(TEM)
Chapter t results AND DISCUSSION
د، Characterization Of Simple Spinel Preparation By Ceramic Method
٤,١,١ Characterization of NiAl _y O _٤ spinel formation
Enly Characterization of CuAlyOs spinel formation
En. " Characterization of CoAl, O spinel formation
٤٫١٫١ Characterization of MgAl _Y O _٤ –Spinel Prepared by Ceramic Method ٤٫١٫٢ Characterization of MgAl _Y O _٤ –spinel prepared by sol-gel method
٤.٢. Characterization of Three components spinel (transitimetal,MgCl ₇ and AlCl ₇)
۶٫۲ Characterization of Spinel prepared by Gel
E,Y.\ Characterization of mixed spinels formed by gel method

E, Y. Y Characterization of Simple Spinel formed by gel method
CHAPTER •
CHAFTER.
SUMMARY AND CONCLUSIONS
SUMINIARY AND CONCLUSIONS
REFERENCES
ARABIC SUMMARY
ARABIC SUMMARY

List of Figures

Figure No.	page
Figure :(\) Spinel structure	\
Figure: (۲) normal Spinel structure	٣٣
Figure: (r) tetrahedral configuration for the bcc lattice	0
Figure: (٤) Crystal Structure of CoFe ₇ O ₅	٦
Figure: (°) Crystal Structure of LiMn _Y O _£ .	 V
Figure: (7)Extended structure of LiMn ₇ O ₅ shown with MnO ₇ po	lyhedra^
Figure (V) Schematic representation of sol-gel process of synthes	
nanomaterials	Y •
Figure: (^) XRD pattern of thermal product of MgCl _* and AlCl _*	۳hr at
۱۰۰۰ °Cto using ceramic method in molar ratio ۱:۲ mole respective	/ely € 0
Figure: (9) XRD patterns of thermal products of Ni(NO _r) ₇ :AlCl ₇	in
proportion 1:7 respectively using ceramic method by heating "hr	at \'C
	۶٦

Figure: (' ') TEM. Image of thermal product of Ni(NO _r) _r :AlCl _r in proportion ':' respectively using ceramic method by heating "hr at ' · · · 'C
Figure (۱۱) XRD pattern of themal product of Cu(NO _r) _r :AlCl _r in proportion 1:7 respectively using ceramic method "hr at 1····'C
Figure: () \(\) TEM image of thermal product of Cu(NO _r) _{\(\)} : AlCl _{\(\)} in proportion (): \(\) respectively prepared by ceramic method \(\) hr at \(\) \(\) \(\) \(\) C
Figure: ($\mbox{\ensuremath{\mbox{\sc NO}_r}}\mbox{\ensuremath{\mbox{\sc NO}_r}}\mbox$
Figure: (15)TEM image of thermal product of Co(NO _T) _T :AlCl _T in proportion 1:7 respectively prepared by ceramic method Thr at 1C
Figure: (۱°)XRD pattern of thermal product of Ni(NO _r) _r ,MgCl _r and AlCl _r at in molar ratio •, ۲°: •, ۲°: ۲ respectively using ceramic method Thr at 1 • • • °C.
Figure: (17) XRD pattern of thermal product of Ni(NO _r) _r ,MgCl _r and AlCl _r in molar ratio ', ''o:', ''o:' respectively using ceramic method ''hr at ''.' 'C o'

Figure: (\\)XRD pattern of thermal product of Ni(NO _{\(\tau\)} ,MgC proportion \(\dots\)\(\dots\)\(\dots\)'\(\dots\)' respectively using ceramic method \(\dots\)\(\dots\)	
Figure: (\\\)TEM image of thermal product of Ni(NO _{\(\tau\)} ,MgCl molar ratio (\(\dagger\),\(\dagger\):\(\dagger\) respectively using ceramic method \(\dagger\)	fhr at \'C.
Figure: (۱۹)TEM image of thermal product of Ni(NO _r) _r ,MgC molar ratio (۰,۰:۰,۰:۲) respectively using ceramic method Thr	
Figure: (Y*)TEM imag of Ni(NO _r) _r ,MgCl _r and AlCl _r using cen method "hr at '*** °C in molar ratio(*, '*o:*, '*o:'Y) respective of	
Figure: (۲) XRD pattern of thermal product of Co(NO _r) _r ,Mg proportion •, $^{\vee}\circ$: •, $^{\vee}\circ$: $^{\vee}$ using ceramic method $^{\vee}$ hr at $^{\vee}$ • · · · C is respectively(S=spinel).	in
Figure: (۲۲) XRD pattern of thermal product of Co(NO _r) _r ,Mgo using ceramic method "hr at '···'C.in molar ratio ·,o:·,o:۲ro spinel,M=MgO).	espectively(S=
Figure: (۲۳) XRD pattern of thermal product of Co(NO ₇) ₇ ,Mgo using ceramic method Thr at Y···· Cin molar ratio ··, Yo: ··, Yo: respectively(S=spinel,M=MgO).	٢

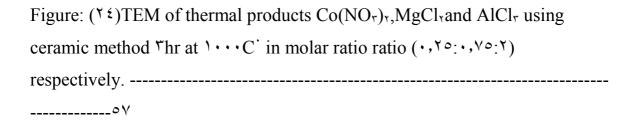


Figure: (Yo)TEM image of thermal products of Co(NO_r)_Y,MgCl_YandAlCl_Y using ceramic method 'hr at '···C' in molare ratio ',o:'Yrespectively.

Figure: ($^{\Upsilon}$ V) XRD patternss of thermal product of Cu ($^{\Upsilon}$ O_r), MgCl_r and AlCl_r $^{\Upsilon}$ hr. at $^{\Upsilon}$ ···°C using ceramic method in molar ratio $^{\Upsilon}$ O: $^{$

Figure: (۲۹) XRD patterns of thermal products of Cu(NO_r)_r,MgCl_rand AlCl_r CuAl_rO_εin molar ratio •, ۲ο:•, νο: ۲ mole respectively using ceramic method Thr at 1•••°C (S=spinel, M=MgO).

Figure: (**)TEM image of thermal product of Cu(NO_r)_r,MgCl_r and AlCl_r
Thr. at \... °C using ceramic method to form MgAl_rO_{\xi} and CuAl_rO_{\xi} in

molar •, ۲0: •, ۷0: ۲ ratio mole respectively
T•
Figure: (") TEM image of thermal product of Cu(NO _r) ₇ ,MgCl ₇ andAlCl ₇ "hr.at ' · · · °C to form MgAl ₇ O ₅ and CuAl ₇ O ₅ in molar ratio · , ^V °: · ,
mole respectively
Figure: ("\tau)XRD patterns of thermal products of Ni (NO _{\tau)\tau,} Mg(OH)\tau and AlCl _{\tau} "hr.at \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Figure: ("") TEM image of thermal product of Ni (NO _r) ₇ , Mg (OH) ₇ and AlCl ₇ at ' · · · °C to form MgAl ₇ O ₅ and NiAl ₇ O ₅ in molar ratio · , ⁷ ° : ⁷ mole respectively
Figure: ($^{r}\xi$) XRD pattern of thermal product of Co (NO _r) _r , Mg (OH) _r and AlCl _r at $^{r}\cdot \cdot \cdot ^{o}$ C to form MgAl _r O _{\xi} and CoAl _r O _{\xi} in molar ratio $^{r}\cdot \cdot ^{r}\circ : ^{r}\cdot \cdot ^{r}\circ : ^{r}\circ :$
Figure: (To)XRD pattern of thermal product of Cu(NO _T) _T ,Mg(OH) _T andAlCl _T at \ \ \ \ \ \ \ ^OC to form MgAl _T O _E and CoAl _T O _E in molar ratio \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Figure: (٣٦)XRD patterns of thermal products of MgCl _x and AlCl _x calcined at V··· C Thr to form MgAl _x O _{\xi} spinel by sol-gel method

Figure: (*\(\mathbf{Y}\))XRD patterns of thermal products of Co(NO _r)with AlCl _r \(\mathbf{Y}\)hr.at \(\mathbf{Y}\)\(\cdot\)C in ethylene glycol as a medium at proportion \(\mathbf{Y}\):\(\mathbf{Y}\) respectively\(\mathbf{Y}\)\(\mathbf{P}\)
Figure: (TA)XRD patterns of thermal products of Cu(NO _r)with AlCl _r at V··°C for Thr after heating in ethylene glycol as a medium at proportion 1:7 respectively
Figure:(\(^9\))thermal products of Ni(NO _{\(^7\)})with AlCl _{\(^7\)} Fig(\(^9\))XRD patterns of \(^1\)hr.at \(^1\). C in ethylene glycol as a medium at proportion \(^1\):\(^1\) respectively.
Figure: (٤٠)XRD patterns of thermal products of Cu(NO _r) _r and Ni(NO _r)with AlCl _r at V···'C using sol gel method in diproplyne glycol as a medium for 'hr at proportion .o:.o:Y respectively
Figure: (٤١)XRD patterns of thermal products of Co(NO _r) _r and Ni(NO _r)with AlCl _r \hat\hat\hat\hat\hat\hat\hat\hat\hat\hat
Figure: (٤٢)XRD patterns of thermal products of Cu(NO _r) _r and Co (NO _r)with AlCl _r \hat \hat \hat \hat \hat \hat \hat \hat

Figure: (ξ^{r}) XRD patterns of thermal products of Cu(NO_r)_r and a medium at proportion .o: o: respectively. ------Figure: (٤٤)XRD patterns of thermal products of Cu(NO_r)₇ and Ni(NO_r)with AlCl_r \hat \lambda \cdot \hat{C} using sol gel method in ethylene glycol as a medium at proportion ',o:',o:' respectively.-----٧. Figure: $(\xi \circ)$ XRD patterns of thermal products of Ni(NO_r)_r and $Co(NO_r)$ with AlCl_r \forall hr.at \forall ... C using sol gel method in ethylene glycol as a medium at proportion ',o:',o:' respectively.-----٧1 Figure: (٤٦)-a-CoAl₇O₅+Co₇O₅, b-CoAl₇O₅, c-Co_{.,70} Mg_{.,70}Al₇O₅, d-٧٣ Figure: (٤٧)-a-CuAl_YO₅b-Cu, voMn, yoAlO₅c-Cu, oMg, oAlO₅ d- $Cu., r \circ Mg., r \circ AlO_{\epsilon}$ ------٧٤ Figure (\(\frac{\xi}{\lambda} \)-a-NiAlyO\(\frac{\xi}{\lambda} \) b-Ni.,\(\cdots Mg.,\(\cdots AlyO\(\frac{\xi}{\lambda} \) c-Ni.,\(\cdot Mg.,\(\cdot AlyO\(\frac{\xi}{\lambda} \) d-Ni., yo Mg., yo AlyO &

40