Recent Advances In Imaging Of Bone Tumours

Essay
Submitted for partial fulfillment of
Master Degree in Orthopedic Surgery

Presented By

Moustafa Yousry El Sayed Moustafa
(M.B.B.Ch)

Supervisors

Prof. Dr. Sameh Ahmed Shalaby

Professor of orthopedic surgery Faculty of medicine Ain Shames University

Dr. Ayman Abd El Aziz Bassiony

Lecturer of orthopedic surgery Faculty of medicine Ain Shames University

> Faculty of medicine Ain Shames University 2010

Recent Advances In Imaging Of Bone Tumours

Essay Submitted for partial fulfillment of Master Degree in ORTHOPEDIC SURGERY

Presented By

Moustafa Yousry El Sayed Moustafa
(M.B.B.Ch)

Supervisors

Pro.Dr. Sameh Ahmed Shalaby

Professor of orthopedic surgery Faculty of medicine Ain Shames University

Dr. Ayman Abd El Aziz Bassiony

Ecturer of orthopedic surgery
Faculty of medicine
Ain Shames University

Faculty of medicine Ain Shames University 2007

التقنيات الحديثة في التصوير الإشاعي لأورام العظام

رسالة مقدمه من الطبيب/ مصطفى يسري السيد مصطفى بكالوريوس الطب و الجراحة

توطئة للحصول على درجة الماجستير في جراحة العظام

تحت إشراف

الأستاذ الدكتور/ سامح أحمد شلبي أستاذ جراحة العظام كلية الطب عين شمس جامعة عين شمس

الدكتور/ أيمن عبد العزيز بسيوني مدرس جراحة العظام كلية الطب جامعة عين شمس

> كلية الطب جامعة عين شمس 2007

CONTENTS

- Introduction and aim of the study.
- Review of types and classification of bone tumours.
- Staging of bone tumours.
- Types of imaging of bone tumours.
- Recent advances in imaging of bone tumours.
- Summary.
- Arabic summary.
- References.

Aim of the study

The aim of this study is to review recent advances in imaging of bone tumours and their importance in detection and early dignosis of different types of bone tumours.

Introduction

The development of medical imaging has progressed remarkably over the past fewdecades. Medical imaging such as radiography, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), can be used for detection, localization, visualization, and characterization of tumors.(1)

Imaging is essential for the diagnosis of all tumours that are not accessible to clinical evaluation. Although a precise histological diagnosis must be made before treatment is instigated, a diagnosis of 'malignancy' is frequently made based on imaging information alone. Bone is one of the sites in which imaging plays a key role in diagnosis.(2)

Accurate staging of patients with malignant disease is a fundamental part of their management and a major challenge for imaging. It is only by appreciating the local regional and systemic extent of the disease process that oncologists are able to make rational decisions regarding the most appropriate treatment strategy.(3)

In the evaluation of primary bone tumours, the roles of radiologists and histopathologists are complementary. The morphological features of primary bone neoplasms are best demonstrated on plain radiographs.(4)

A number of advances have occurred in CT, CT is the mainstay of measuring changes in tumour volume with imaging.(4)

MRI has a number of imaging benefits, including superb soft tissue contrast, multiplanar and 3D image acquisition capability, freedom from bony artefacts, and high signal specificity. Other advantages include the absence of exposure to ionizing radiation (an important factor when imaging children, pregnant women, and the young with curable tumours) and the ability to acquire biological and physiological information. (5)

The purpose of imaging bone metastases is to identify the presence and extent of disease, evaluate complications such as spinal cord compression or fractures, and to monitor therapeutic response. (4)

Technetium (Tc)-99m-labeled diphosphonate scintigraphy is used in the staging of bone tumors to evaluate for the presence of metastases. (6)

FDG PET has been shown to be useful for detection of local recurrence,(7) and metastatic disease in patients who have sarcoma. (8)

Radionuclide bone scans have been a reliable tool for detecting multifocal osseous lesions and remain the mainstay for evaluation of osseous metastases. (9)

The increasing and more widespread use of advanced and improved imaging techniques in the earlier process of oncologic work-up will result in the delineation of smaller lesions. This suggests that primary tumors, metastatic nodes, and distant metastases are diagnosed when they are smaller. This will result in a shift in treatment of cancers to an earlier stage. (10)

الملخص العربي

إن التطور في التصوير الإشاعي شهد تقدما كبيرا في العقود الأخيرة.

و يعتبر التصوير الإشاعي أساسا لتشخيص الأورام التي لا يمكن تشخيصها إكلينيكيا و تعتبر العظام من الأماكن التي يلعب التصوير الإشاعي دورا أساسيا في تشخيص أورامها.

تقسيم أورام العظام الخبيثة يعتبر جزءا أساسيا من العلاج اللازم لها ويمثل ذلك تحديا كبيرا للتصوير الإشاعي لأورام العظام.

التشخيص الأمثل لأورام العظام يعتبر دورا مشتركا بين كلا من التصوير الإشاعي و التحليل الهستوباثولوجي.

من أنواع التصوير الإشاعي لأورام العظام:

- الأشعة العادية.
- الأشعة المقطعية بالكمبيوتر
- الأشعة بالرنين المغناطيسي.
- الأشعة بالموجات فوق الصوتية.
 - المسح الذري للعظام.

إن التقدم و التوسع في تطوير تقنيات التصوير الإشاعي واستخدامها في المراحل المبكرة وهذا المبكرة للأورام يساعد على اكتشاف الأورام الأولية و الثانويات في المراحل المبكرة وهذا يؤدي إلى نقلة كبيرة في علاج الأورام في مراحلها المبكرة.

REFERENCES

- 1. Padhani A.R., Choyke P.L., New Techniques in onchologic imaging, 5: 80–87, 2006.
- **2. Barloon TJ., Yuh WT., Yang CJ.,et al.,**Spinal subarachnoid tumor seeding from intracranial metastasis: MR findings.Journal of Computed Assisted Tomography, 11: 242–4, **1987.**
- **3. Kriplani AK., Kapur BM.,** Laparoscopy for pre-operative staging and assessment of operability in gastric carcinoma. Gastrointestinal Endoscopy, 37: 441–3, **1991.**
- **4. Souhami R.L., Tannock I., Hohenberger P., et al.,** Oxford text book of Onchology, 3: 26–27, **2002.**
- **5. Redpath TW.** MRI developments in perspective. British Journal of Radiology, 70: S70–80, **1997.**
- **6. Wolf RE., Enneking WF.,** The staging and surgery of musculoskeletal neoplasms. Orthop Clin North Am,27:473–481, **1996.**

- 7. Kole A.C., Nieweg O.E., van Ginkel R.J., et al. Detection of local recurrence of soft-tissue sarcoma with positron emission tomography using [18F] fluorodeoxyglucose. *Ann Surg Oncol*,4: 57-63, **1997.**
- **8.** Hawkins D.S., Schuetze S.M., Butrynski J.E., et al. [18F] Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. *J Clin Oncol*,23: 8828-8834, **2005.**
- **9. Richardson M.L., Gillespy T.,** Magnetic resonance imaging. M.E. Imaging of bone tumors, 358-446, **1993.**
- **10. Barentsz J., Takahashi S., Oyen W., et al.** Imaging Techniques for Diagnosis and Staging. Journal of clinical Onchology, 24: 3241, **2006.**

Acknowledgment

First and foremost, thanks are due to GOD, the most kind and merciful.

I gratefully acknowledge the sincere advice and guidance of **Prof. Dr.** *Sameh Ahmed Shalaby*, Professor of Orthopedic Surgery, Faculty of Medicine, Ain Shams University, for his support, Guidance and general help in accomplishing this work.

I am greatly honored to express my sincere appreciation to **Dr.**, **Ayman Abd El Aziz Bassiony** Lecturer Of Orthopedic Surgery, Faculty Of Medicine, Ain Shams University, for his support, direction and meticulous revision of this work.

I owe a particular dept of gratitude to my Father, my Mother, and my Wife, for their help, support and guidance.

CONTENTS

•	Introduction and aim of the study	1
•	Review of types and classification of bone tumors	3
•	Staging of bone tumors	13
•	Types of imaging of bone tumors	21
•	Recent advances in imaging of bone tumors	23
•	Summary	93
•	References	97
•	Arabic summary	

List of Figures

•	Figure (1)	Enostosis (bone island) of L3 left
	pedicle	5
•	Figure (2)	: Osteomas of the left frontoethmoid
	region	5
•	Figure (3):	Cortical osteoid osteoma 6
•	Figure (4):	Osteoblastoma of the distal phalanx 7
•	Figure (5):	: Metaphyseal and diaphyseal
	osteosarcor	na 8
•	Figure (6):	Ewing sarcoma
•	Figure (7):	Chondroblastoma10
•	Figure (8):	Giant cell tumor
•	Figure (9):	Type 1a geographic lesion 25
•	Figure (10)): Enchondroma
•	Figure (11)	: Type 1b geographic lesion 26
•	Figure (12)): Giant cell tumor
•	Figure (13)	: Type 1c geographic lesion 27
•	Figure (14)	1: Type 2 moth-eaten lesion
•	Figure (15)	Type 3 permeated lytic lesion 29
•	Figure (16)): Osteosarcoma
•	Figure (17)): Ewing's sarcoma
•	Figure (18)): Chondrosarcoma31
•	Figure (19	Osteoid osteoma

Figure (20):	Parosteal osteosarcoma
Figure (21):	Unilamellated periosteal reaction 35
Figure (22):	Multilamellated perioteal reaction
	35
Figure (23):	Codman triangle
Figure (24):	Perpendicular periosteal reaction. 36
Figure (25):	Chordoma
Figure (26)	: Diagram shows patterns of
mineralization	n of osseousmatrix
Figure (27):	Chondral mineralization 39
Figure (28):	Ground-glass mineralization 39
Figure (29):	Diagram shows common sites of
tumors	42
Figure (30):	Angioma of the seventh thoracic
vertebra	44
Figure (31):	Multiple exectores
118416 (61).	Multiple exostoses46
Figure (32):	CT scan of the thorax
	_
Figure (32): Figure (33):	CT scan of the thorax 47
Figure (32): Figure (33):	CT scan of the thorax
Figure (32): Figure (33): Figure (34):	CT scan of the thorax 47 Osteosarcoma 49 Chondrosarcoma 49 Ewing sarcoma 50
	Figure (21): Figure (22): Figure (23): Figure (24): Figure (25): Figure (26) mineralization Figure (27): Figure (28): Figure (29): tumors Figure (30): vertebra

•	Figure (38):	Osteosarcoma. Coronal Tl-weighted
	image	53
•	Figure (39):	Osteosarcoma. Sagittal Tl-weighted
	image	54
•	Figure (40):	Ewing sarcoma
•	Figure (41):	Osteosarcoma of the proximal humerus
		59
•	Figure (42):	Normal whole body MRI study 63
•	Figure (43):	metastatic breast carcinoma 63
•	Figure (44):	coronal view from a PET scan 66
•	Figure (45):	whole body MR angiogram 68
•	Figure (46):	Coronal whole body IR TSE image
		68
•	Figure (47):	Coronal whole body T1 weighted
	image	70
•	Figure (48):	A bone cyst
•	Figure (49):	An aneurismal bone cyst 77
•	Figure (50):	Fibrous dysplasia (whole body
	scanning)	
•	Figure (51):	Osteoid osteoma
•	Figure (52):	Osteosarcoma79
•	Figure (53):	Chondrosarcoma 80
•	Figure (54):	Osteosarcoma
	_ ` '	