DIAGNOSTIC YALUE OF GALECTIN-3 AS A MARKER FOR BLADDER CANCER

Thesis

Submitted For Partial Fulfillment of Master Degree
in
Clinical and Chemical Pathology

By

Sara Abd el Raxman Abd el Atty

M.B., B.Ch., Zagazig University

Supervised By

Professor/ Koda Moxamed & Gendi

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Professor/ Bolkina Madkour

Professor of Clinical and Chemical Pathology Theodor Bilharz Research Institute

Doctor/ Dina Aziz Kxattab

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Rin Sxams University
2013

List of Contents

Title	Page No.
List of Abbreviations	••••••
List of Tables	••••••
List of Figures	••••••
List of Photos	•••••••••••••••••••••••••••••••••••••••
Introduction	•••••••••••••••••••••••••••••••••••••••
Aim of the work	
Review of Literature	
Urinary Bladder Cancer	
Bladder Cancer Biomarkers	••••••••••••
• Galectin-3	
Subjects and Methods	•••••••
Results	•••••••••••
Discussion	
Summary and Conclusion	
Recommendations	
References	
Arabic Summary	······

List of Abbreviations

AGE: : Advanced glycosylation end product

AUA: : American urological association

Bax:: Bcl-2 accelerated x protein

BCG: : Bacille-calmette guerin

Bcl....: B cell lymphoma

Bcl-xL: : B cell lymphoma-extra-large

BH: : Bcl-2 homology domain

BID....:: BH3 interacting domain death agonist

BTA....: Bladder tumor antigen

CIS: : Carcinoma in situ

c-Myc:: Cellular-myelocytomatosis

CRD: : Carbohydrate recognition domain

CT.....: Computerized tomography

DNA: : Deoxyribonucleic acid

DR:: Death receptor

ECs....: Endothelial cells

ELISA....: Enzyme-linked immunosorbent assay

ER....: Endoplasmic reticulum

FDPs.....: Fibrin/Fibrinogen degradation products

FISH.....: Fluorescence in situ hybridization

G I.... : Grade I

G=Gly: : Glycine

H&E.....: Hematoxylin and eosin.

HA.....:: Hyaluronic acid

HAase: : Hyaluronidase

HPV:: Human papillomavirus

HRP:: Horse radish peroxidase.

hTERT:: Human telomerase reverse transcriptase

hTR:: Human telomerase RNA component

HYAL-1....: Hyal-uronoglucosaminidase-1

IHC:: Immunohistochemical.

IL:: Interleukin

IVP:: : Intravenous pyelography

kDa....: Kilo dalton.

K-Ras....: : Kirsten-rat sarcoma

LAMP.....: Lysosome-associated membrane protein

LOH.....: Loss of heterozygosity

MMPs :: Matrix metalloproteinases

MRI.....: : Magnetic resonance imaging

mRNA.....: : Messenger RNA

MSA: : Microsatellite analysis

N=Asn....:: Asparagine

NBI.....:: Narrow-band imaging

NCI.....: : National Cancer Institute

NMP.....: Nuclear matrix protein

p53....: Protein 53

PBMCs: : Peripheral blood mononuclear cells

PBS.....: Phosphate buffer saline

PCR.....: Polymerase chain reaction

PI3K.....: Phosphoinositide 3-kinase

PKB.....: Protein kinase B

PSA:: Prostate-specific antigen

Quanticyt: Quantitative cytology.

R=Arg....: Arginine

List of Abbreviations

Raf.....: Rapidly accelerated fibrosarcoma

RNA: : Ribonucleic acid

ROC.....:: Receiver operating characteristic

Rpm: : Revolution per minute.

RT-PCR:: Reverse transcriptase-polymerase chain reaction

SPSS.....:: Statistical package for social sciences

SqCC.....: Squamous cell carcinoma

S-type: : Soluble-type

TBRI:: Theodor Bilharz Research Institute

TCC: : Transitional cell carcinoma

TCR: : T-cell receptor

TNM:: Tumor-node-metastasis

TP.....: Telomerase-associated protein

TRAIL: Tumor necrosis factor (TNF)—related apoptosis-

inducing ligand

TRAP.....: Telomeric repeat amplification protocol

TUR:: : Transurethral resection

UBC: : Urinary bladder cancer

W=Trp....: Tryptophan

WHO: : World Health Organization

WLC: : White light cystoscopy

Wnt:: Wingless/Integrated

List of Tables

Table No.	Title Page I	Vo.
Table (1):	2009 TNM staging system.	20
Table (2):	Stages of bladder cancer	21
Table (3):	WHO grading in 1973 and 2004	23
Table (4):	Summary of bladder cancer biomarkers and	
	their performance.	
Table (5):	The three main groups of the study:	
Table (6):	Distribution of the studied groups.	112
Table (7):	Age of studied groups.	112
Table (8):	Sex distribution of studied groups	112
Table (9):	The incidence of bilharzial association in different groups studied.	113
Table (10):	Statistical comparison between all groups as regard serum concentration of galectin-3 (pg/mL)	114
Table (11):	Comparison between SqCC and TCC as regard serum galectin-3 concentration (pg/mL)	
Table (12):	Comparison between different grades of bladder cancer as regard serum galectin-3 concentration (pg/mL)	
Table (13):	Comparison between different stages of bladder cancer (Group III) as regard serum galectin-3 concentration (pg/mL)	117
Table (14):	Comparison between all groups as regard galectin-3 immunohistochemical staining	118
Table (15):	Comparison between SqCC and TCC as regard galectin-3 immunohistochemical staining	119
Table (16):	Comparison between different grades of bladder cancer as regard galectin-3 immunohistochemical staining.	
Table (17):	Comparison between different stages of bladder cancer as regard galectin-3 immunohistochemical staining.	121

List of Tables (Cont...)

Table No.	Title	Page No.
Table (18):	Comparison between bilharzial and non-bilh cystitis as regard serum concentration of gale (pg/mL)	ctin-3
Table (19):	Comparison between bilharzial and non-bilha cystitis as regard immunohistochemical staining galectin-3	ng of
Table (20):	Comparison between bilharzial and non-bilh associated malignant cases as regard salectin-3 concentration (pg/mL)	serum
Table (21):	Comparison between bilharzial and bon-bilh associated malignant cases as regard gale immuno-histochemical staining.	ectin-3
Table (22):	Correlation study between galectin-3 concent (pg/mL) and galectin-3 immunohistochemist group III.	ry in
Table (23):	ROC curve between control and bladder can regard serum concentration of galectin-3 (pg/m	
Table (24):	ROC curve between cystitis and bladder cases as regard serum concentration of gale (pg/mL)	ctin-3

List of Figures

Table No	. Title	Page No.
Fig. (1):	Layers of the bladder wall	6
Fig. (2):	Normal urothelium	15
Fig. (3):	Different stages of bladder cancer	19
Fig. (4):	Hexaminolevulinate fluorescence cystoscopy s bladder tumor	_
Fig. (5):	Urine cytology stained by the Papanicolaou pro Normal cytology with no mitotic activity and nuclear- cytoplasmic ratio	normal
Fig. (6):	Urine cytology showing urothelial cells with atypia and increased nuclear-cytoplasmic ratio	n slight 42
Fig. (7):	Urine cytology from urothelial carcinoma	43
Fig. (8):	Urovision FISH test	45
Fig. (9):	Families of galectins	62
Fig. (10):	Cellular location and functions of galectins	63
Fig. (11):	Selected biological functions assigned to d members of the galectin family	
Fig. (12):	Extracellular functions mediated by galectin-3	69
Fig. (13):	Suggested model of the role of galectin-3 effect during apoptosis	

List of Figures (Cont...)

Table No	o. Title Page	e No.
Fig. (14):	Tumor angiogenesis	78
Fig. (15):	Schematic overview of the mechanisms by which galectin expression by activated endothelial cells mig contribute to tumor progression	ht
Fig. (16):	Principal of ELISA technique of galectin-3	88
Fig. (17):	Galectin-3 standard dilutions.	91
Fig. (18):	Standard curve of galectin-3 by ELISA	94
Fig. (19):	Serum concentration of galectin-3 in different groups.	114
Fig. (20):	Serum concentration of galectin-3 in different grades bladder cancer.	
Fig. (21):	Serum concentration of galectin-3 in different stages bladder cancer.	
Fig. (22):	Galectin-3 immunostaining in different groups studied	l118
Fig. (23):	Galectin-3 immunostaining in different grades bladder cancer.	
Fig. (24):	Galectin-3 immunostaining in different stages bladder cancer.	
Fig. (25):	ROC curve between control and bladder cancer regard serum concentration of galectin-3 (pg/mL)	
Fig. (26):	Diagram between control and bladder cancer as regarserum concentration of galectin-3 (pg/mL)	
Fig. (27):	ROC curve between cystitis and bladder cancer cases regard serum concentration of galectin-3 (pg/mL)	
Fig. (28):	Diagram between cystitis and bladder cancer cases regard serum concentration of galectin-3 (pg/mL)	

List of Photos

Photos No.	Title Page No.	
Photo (1):	Control case with normal urothelial lining (H&E x100) 12	29
Photo (2):	Control case negative for galectin-3 monoclonal antibody (IHC, DAB x100)12	29
Photo (3):	Bilharzial cystitis with many dead bilharzial ova at lamina propria (H&E x100)13	30
Photo (4):	Bilharzial cystitis with weak expression of galectin-3 monoclonal antibody (IHC, DAB x100)13	30
Photo (5):	Poorly differentiated squamous cell carcinoma, GIII, Stage II (H&E x200)13	31
Photo (6):	Poorly differentiated squamous cell carcinoma, GIII, Stage II with strong expression of galectin-3 monoclonal antibody (IHC, DAB x200)	31
Photo (7):	Well differentiated squamous cell carcinoma, GI, Stage I (H&E x200)	32
Photo (8):	Well differentiated squamous cell carcinoma, GI, Stage I with moderate expression of galectin-3 monoclonal antibody (IHC, DAB x200)	32
Photo (9):	Poorly differentiated transitional cell carcinoma, GIII, Stage II (H&E x100)	
Photo (10):	Poorly differentiated transitional cell carcinoma, GIII, Stage II with strong expression of galectin-3 monoclonal antibody (IHC, DAB x200)	33
Photo (11):	Papillary non-invasive transitional cell carcinoma, GI, Ta (H&E x200).	34
Photo (12):	Papillary non-invasive transitional cell carcinoma, GI, Ta with moderate expression of for galectin-3 monoclonal antibody (IHC, DAB x200)	34
Photo (13):	Poorly differentiated transitional cell carcinoma, GIII, Stage II associated with schistosomiasis (H&E x100)13	35
Photo (14):	Poorly differentiated transitional cell carcinoma, GIII, Stage II associated with schistosomiasis with strong expression of galectin-3 monoclonal antibody (IHC, DAB x200)	35

Introduction

rinary bladder cancer is a major public health problem being one of the most common malignancies (*Arentsen et al.*, 2009). It ranks in the top five of newly diagnosed cancers in men and in the top ten of estimated cancer deaths (*Shelley et al.*, 2010).

According to *Blann* (2006) the highest bladder cancer incidence rates are generally found in industrially developed countries and in areas associated with endemic schistosomiasis in Africa and Middle East. Egypt has the highest reported worldwide incidence (37 per 100,000 populations) in the world due to endemic schistosomiasis. Bladder cancer is clinically characterized by high recurrence rates and poor prognosis once the tumor invades the muscular layer (*Jemal et al.*, 2009).

Two main histological types of bladder cancer are identified; the Transitional Cell Carcinoma (TCC) and the Squamous Cell Carcinoma (SqCC). The TCC is related to cigarette smoking and is most prevalent in the Western and industrialized countries. The SqCC is more frequently seen in some Middle Eastern and African countries where urinary schistosomiasis is an endemic disease (Sengupta et al., 2004).

Diagnostic procedures in bladder cancer patients include urine cytology, cystoscopy with biopsy and excretory urography. Cystoscopy remains the standard method used for most cases of bladder carcinoma but it is an invasive procedure (Carmack and saloway, 2006).

Galectin-3 is a member of the galectin gene family that is expressed at elevated levels in a variety of neoplastic cell types and has been associated with cell growth, cellular adhesion process, cell proliferation, transformation, metastasis, and apoptosis (Yang and Liu, 2003; Nakahara et al., 2005).

The expression of galectin-3 is up-regulated in various types of cancer. Several reports have indicated its involvement in carcinogenesis. One possible reason for this is the antiapoptotic activity of galectin-3. Increased galectin-3 mRNA expression compared to basal levels of normal bladder samples was observed in many bladder cancer samples (Takenaka et al., 2003; Takenaka et al., 2004).

Rim of the Work

his work aims to measure serum galectin-3 concentration as well as galectin-3 expression in bladder tissues of bladder cancer patients to evaluate its role in diagnosis and to correlate these levels with different stages and grades of tumor as well as the effect of bilharziasis on its expression.

URINARY BLADDER CANCER

ANATOMY AND XISTOLOGY:

he urinary bladder is a pelvic organ that is abdominal in position in young (< 6 years old) individuals and a pelvic organ after the pelvis has developed sufficiently, it is a hollow in the pelvis with flexible, muscular Embryologically, it is derived from the urogenital sinus, and is initially continuous with the allantois. In males, the base of the bladder lies between the rectum and the pubic symphysis, superior to the prostate, and separated from the rectum by the rectovesical pouch. In females, the bladder sits inferior to the uterus, anterior to the vagina, and separated from the uterus by the vesicouterine pouch. In infants and young children, the urinary bladder is in the abdomen even when empty (Moore et al., 2006).

When viewed from within, the bladder is lined with transitional epithelium, which appears smooth when the bladder is full but contracts into numerous folds when the bladder empties. Beneath the transitional epithelium is a thin layer of connective tissue called the *lamina propria*. Next is a layer of muscle tissue called the *muscularis propria*, beyond this muscle, another zone of fatty connective tissue separates the bladder from other nearby organs (Fig. 1) (Kaufman et al., 2009).