RELATIONSHIP BETWEEN ORGANIC MATRIX COMPOSITION AND ULTRASTRUCTURE OF EGGSHELL IN SOME LOCAL BREEDS OF CHICKENS

By LAMIAA MOSTAFA ABD EL-MONAM RADWAN

B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 2003 M.Sc. Agric. Sc. (Poultry Breeding), Ain Shams University, 2007

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agricultural Science (Poultry Breeding)

Department of Poultry Production Faculty of Agriculture Ain Shams University

2010

Approval Sheet

RELATIONSHIP BETWEEN ORGANIC MATRIX COMPOSITION AND ULTRASTRUCTURE OF EGGSHELL IN SOME LOCAL BREEDS OF CHICKENS

By

LAMIAA MOSTAFA ABD EL-MONAM RADWAN

B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 2003M.Sc. Agric. Sc. (Poultry Breeding), Ain Shams University, 2007

This thesis for Ph.D. degree has been approved by:

Prof. Dr. Hassan Hassan Younis
Prof. of Poultry Breeding, Faculty of Agriculture,
Kafr El-Sheikh University
Prof. Dr. Ahmed Hatem El-Attar
Prof. of Poultry Breeding, Faculty of Agriculture,
Ain Shams University
Prof. Dr. Ahmed Galal El-Sayed
Prof. of Poultry Breeding, Faculty of Agriculture,
Ain Shams University
Prof. Dr. Ali Zein El-Dein Hassan
Prof. of Poultry Breeding, Faculty of Agriculture,
Ain Shams University

Date of Examination: 20/7/2010

RELATIONSHIP BETWEEN ORGANIC MATRIX COMPOSITION AND ULTRASTRUCTURE OF EGGSHELL IN SOME LOCAL BREEDS OF CHICKENS

By LAMIAA MOSTAFA ABD EL-MONAM RADWAN

B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 2003 M.Sc. Agric. Sc. (Poultry Breeding), Ain Shams University, 2007

Under the supervision of:

Prof. Dr. Ali Zein El-Dein Hassan

Prof. of Poultry Breeding, Department of Poultry Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Prof. Dr. Moataz Mohamed Fathi

Prof. of Poultry Breeding, Department of Poultry Production, Faculty of Agriculture, Ain Shams University

Prof. Dr. Ahmed Galal El-Sayed

Prof. of Poultry Breeding, Department of Poultry Production, Faculty of Agriculture, Ain Shams University

ABSTRACT

Lamiaa Mostafa Abd El- Monam Radwan: Relationship between Organic Matrix Composition and Ultrastructure of Eggshell in Some Local Breeds of Chickens. Unpublished Ph.D., Department of Poultry Production, Faculty of Agriculture, Ain Shams University, 2010.

The main goal of this study was to examine the relationship between ultrastructural and organic matrix in Fayoumi and Dandarawi chicken breeds. This study was to assess mechanical properties at different age (24, 30, 36 and 42 weeks of age, ultrastructure and organic matrix estimated at 30 weeks of age. The results showed that the Fayoumi eggs had significantly higher specific gravity and mechanical properties values (thickness and breaking strength of eggshell) than that of Dandarawi ones. With respect to ultrastructural traits, it could be noticed that the relative palisade layer (effective thickness) of Fayoumi eggs was significantly higher than that of Dandarawi ones. Opposite trend was noticed for relative cap layer. Concerning ultrastructural variants, the Fayoumi eggs owned shells with significantly higher values of confluence and cuffing traits. Conversely, the Dandarawi eggs have superior values of fusion, alignment and type B's traits than Fayoumi ones. The Fayoumi breeds benefit good structure properties and organic component compared to Dandarawi ones so the Fayoumi breed had a high resistance broke shell than Dandarawi breeds.

Fayoumi eggs noticed that the ovocleidin 116 osteopontin and ovocleidin-17 high intensity compared to Dandarawi eggs. While, both ovotransferrin and ovalbumin was increase intensity from Dandarawi than Fayoumi eggs. Conclusion that ovocleidin 116 and osteopontin may be relationship with good ultrastructure of eggshell. While, ovotransferrin and ovalbumin may be

relationshiped whit low ultrastructure of eggshell. The Fayoumi breeds benefit good structure properties and organic component compared to Dandarawi ones

Key Words:

Eggshell quality traits, eggshell ultrastructural, organic matrix, Fayoumi breed, Dandarawi breed.

ACKNOWLEDGMENTS

Firstly, I wish to express my prayerful thanks to **ALLAH** for every thing.

My deepest gratitude and sincere thanks are extended to **Prof. Dr. A. Zein El-Dein**, Professor of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for his constructive guidance, valuable advice, revising the manuscript and continues supporting during this study.

I deeply grateful and greatly indebted to **Prof. Dr. M. M. Fathi**, Professor of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for his supervision, interest, encouragement and revising the manuscript. Also, his valuable inputs and knowledge of ultrastructural of eggshell has been a vain able source of learning for me during the course of the study.

I wish to express my sincere gratitude to **Dr. A. Galal**, Professor of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for his supervision, encouragement, valuable advice, interest and revising the manuscript.

I wish also to express my deepest gratitude to **Prof. Dr. H. Ayoub**, , **Prof. Dr. M. F. Amer** and **Prof. Dr. A. H. El-Attar**,
Professors of Poultry Breeding, Poultry Production Department, Faculty
of Agriculture, Ain Shams University for their encouragement and
valuable advice and spirit supporting throughout the course of the study.

Special acknowledgments and deep grateful to **Dr. Eman Fahmi** and **Dr. Mohamed Abd El-Salam,** Professor of Genetic Department, Ain Shams University for offering all facilities necessary to carry out the organic matrix analysis of eggshell using SDS Electropheresis in Laboratory of genetic department.

My special thanks are to, **Dr. U. M. Ali** and **Dr. M. Mahrous** for supporting me in many ways during this study. Also many thanks to all staff members of Poultry Production Department for continuous helping me throughout this work.

I would like to express all my sincere gratitude and unlimited love to my soul **father, mother and brother** for their patience, continual encouragement and love.

CONTENTS

	Page
LIST OF TABLES	٧
LIST OF FIGURES	vi
INTRODUCTION	1
REVIEW OF LITERATURE	3
Laying performance	3
1.1. Age at sexual maturity	3
1.2.Weight and body measurements at maturation	3
1.3. Egg production measurements	4
1.3.1. Egg number	4
1.3.2. Egg weight and egg mass	4
1.3.3. Broken eggs	4
2. Egg quality measurements	5
2.1. Internal egg quality measurements	5
2.1.1 Yolk quality	5
2.1.1.1. Yolk weight and percentage	5
2.1.1.2 Yolk index	5
2.1.2. Albumin quality	5
2.1.2.1 Albumin weight and percentage	5
2.1.2.2 Haugh units	6
2.2. External egg quality measurements	6
2.2.1. Shape index	6
2.2.2. Specific gravity	7
2.2.3.Shell breaking strength	7
2.2.4. Shell thickness	8
2.2.5. Membranes thickness	8
2.2.6. Shell weight and shell percentage	8

2.2.7. Shell surface area	9
2.2.8. Egg volume	9
3. Eggshell ultrastructure	9
4. Eggshell matrix proteins and calcification process	11
4.1. Calcium binding protein	12
4.2. In vitro interaction with mineral phase	12
4.3. In vivo relationship between eggshell matrix and	14
eggshell quality	
4.4. Genomic approach	15
5. involvement of matrix protein in mineralization	15
6. Chemical position and ultrastructure of eggshell	17
7. Characterization of eggshell matrix components	19
8. Matrix-mineral ultrastructural relationships in the	22
avian eggshell MATERIALS AND METHODS	26
	26
 Design of experiment Measurements and observations. 	27
	27
2.1. Body measurement s at sexual maturity	
2.2. Egg production parameters	27
2.3. Egg quality measurements	28
2.3.1. External egg quality	28
2.3.1.1. Strength of eggshell	28
2.3.1.2. Shell thickness with and without shell	28
membranes	00
2.3.1.3. Shell percentage	29
2.3.1.4. Egg surface area	29
2.3.1.5. Egg shape index	29
2.3.1.6. Specific gravity	29

2.3.2. Internal egg quality	29
2.3.2.1. Haugh units	29
2.3.2.2. Albumen weight and albumen percentage	30
2.3.2.3. Yolk index	30
2.3.2.4. Yolk weight and yolk percentage	30
3. Scanning electron microscopy (SEM) Technique	30
4. SDS-PAGE (eggshell)	32
4.1. Extraction of protein fractions	32
4.2. Application of samples	32
4.3. Gel preparation	33
4.4. Electrophoresis conditions	34
4.5. Gel staining and destaining	35
4.5.1. Staining solution	35
4.5.2. Destaining solution	35
4.6. Gel Analysis	35
5. Statistical analysis	36
RESULTS AND DISCUSSION	37
1. Maturation measurements	37
2. Laying performance	37
2.1. Egg number and egg production rate	37
2.2. Egg weight and egg mass	37
2.3. Cracked eggs percentage	38
3. Egg quality measurements	39
3.1. Egg weight	39
3.2. Internal egg quality	39
3.2.1. Albumen quality trait	39
3.2.2. Yolk index	40

3.3. External egg quality	41
3.3.1. Specific gravity	41
3.3.2. Shape index	42
3.3.3. Shell breaking	42
3.3.4. Shell thickness	43
3.3.5. Membranes thickness	44
3.3.6. Wet shell weight and percentage	44
3.3.7. Dry shell weight and percentage	45
3.3.8. Eggshell surface area	45
4. Ultrastructural traits of eggshell	51
5- Organic matrix of eggshell	67
SUMMARY AND CONCLUSION	72
REFERENCES	75
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
1.	Identified eggshell matrix proteins.	21
2.	The composition and calculated chemical analysis of the	27
	experimental diets.	
3.	Composition of 15% resolving gel and 3.9% staking gel.	33
4.	Maturation measurements for Fayoumi and Dandarawi	38
	breeds (means ± SE).	
5.	Egg production characteristics for Fayoumi and Dandarawi	39
	eggs (means ± SE).	
6.	Egg weight for Fayoumi and Dandarawi eggs (means ±	45
	SE).	
7.	Internal egg quality measurements for Fayoumi and	46
	Dandarawi eggs(means ± SE)	
8.	Specific gravity, egg shape index and eggshell strength	48
	traits for Fayoumi and Dandarawi eggs (means ± SE).	
9.	Eggshell and membranes thickness for Fayoumi and	49
	Dandarawi eggs (means ± SE).	
10.	Eggshell weight for Fayoumi and Dandarawi eggs (means ±	50
11.	SE).	51
• • • •	Eggshell area for Fayoumi and Dandarawi eggs (means ± SE).	01
12.	Cross-sectional length (µm) of individual eggshell layers	57
	(absolute or %) in Fayoumi and Dandarawi breeds at 30	
	week of age.	
`13.	Ultrastructural variants of eggshell mammillae for Fayoumi	57
	and Dandarawi breeds at 30 week of age.	
14.	SDS-PAGE pattern of soluble protein from Fayoumi and Dandarawi eggs	71

LIST OF FIGURES

Figure		Page
1	Good caps and a rounded between adjacent	58
2	mammillary knobs cone for Fayoumi eggs. Extensive alignment for Dandarawi eggs	59
3	Late fusion between the adjacent mammillary	60
	cones and poor confluence for Dandarawi eggs.	
4	Early fusion between the adjacent mammillary cones, Cuffing (adhesive calcium carbonate) among columns and good confluence for Fayoumi eggs.	61
5	Type Bs bodies located with the mammillary layer	62
6	in Dandarawi eggs. Extensive confluences for Fayoumi eggs make	63
	good attachment between cone and shell	
	membranes	
7	Cuffing rounded pore in Fayoumi eggs	64
8	Big cone make low density of mammillary tips for	65
	Fayoumi eggs.	
9	Pointed caps make high density of mammillary tips	66
	for Dandarawi eggs	
10	SDS-PAGE separation of eggshell matrix proteins in extracted samples for Fayoumi and Dandarawi breeds	70

INTRODCTION

The eggshell is essential for propagation of all avian species; it is a sophisticated structure, whose properties reflect perfectly their crucial functions in reproduction. These functions are basically: (a) to protect the contents of the egg from the microbial and physical environment; (b) to control the exchange of water and gases through pores during the extra-uterine development of the chick embryo; (c) to provide calcium for embryonic development once the yolk stores are depleted. In order to meet these requirements, the eggshell must be a porous ceramic material. It must be as light as possible, and balances the requirement for strength to resist the impact of predators while permitting the hatching embryo to break through from the inner side to escape. For the same reasons, it must be of low chemical and biological activity on the outer surface, but easy to dissolve at the inner surface. This eggshell is rapidly formed at physiological temperatures. All these features are simultaneously present in the remarkable eggshell, which seems to be designed ad hoc, but is certainly the result of an evolutionary process. All avian eggshells share the same mineral component, namely the trigonal phase of calcium carbonate (CaCO3), known as calcite, which is the more stable polymorph at room temperature. The avian eggshell forms in a confined space, the distal segment of the hen oviduct, in an acellular uterine fluid that is supersaturated with respect to calcium and bicarbonate and contains the organic precursors of the shell matrix. Its distinctive features, as compared to bone or teeth, are the nature of the mineral depositcalcium carbonate in the form of calcite, as well as the absence of cell- directed assembly during its fabrication upon organic cores present on the outer surface of the eggshell membranes. The thickness of the eggshell, the form and size of the whole

eggshell and its structural elements, as well as features of the porous system varies among different species; however, the general structure of the eggshell is basically the same in all birds. The main goal of this study was to examine the relationship between ultrastructural and organic matrix in Fayoumi and Dandarawi chicken breeds.