Prolactin receptor expression in breast cancer

Thesis

Submitted for master degree

In Obstetrics and Gynecology

Presented by

Yara Mohamed kamal Mohamed
M. B.B.Ch 2003

Supervised by Prof. Dr. Salah Taha Fayed

Professor of Obstetrics and Gynecology Faculty of medicine-Ain Shams University

Dr. Ahmed Hamdy Nagib Abdel Rahman

Assistant Professor of Obstetrics and Gynecology Faculty of medicine- Ain Shams University

Dr. Amany M. Maher

Colleague of Oncology Early Diagnostic Unit Faculty of medicine- Ain Shams University

> Faculty of medicine Ain shams University 2013

Acknowledgements

First and Foremost thanks to **God** for helping me to fulfill this work.

No words express my sincerest appreciation and profound gratitude to **Prof. Dr. Salah Taha Fayed**, professor of Obstetrics and Gynecology Department, Faculty of Medicine, Ain Shams University, to whom I owe so much for his supervision, instructive criticism, invaluable assistance and meticulous revision of all details of this thesis. I am extremely indebted to him for getting me closer to the wonderfull world of knowledge and imagination.

My words fail me to express my deepest thanks and gratitude to **Dr. Ahmed Hamdy Nagib Abdel Rahman**, assistant professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his great help starting from giving me the chance to work in this field with his direction throughout the work and ending by his prominent finger print during the finalization of this work and continuous much privileged and honored to have him as my supervisor and to work under his guidance and supervision.

I would like to express my deepest thanks to **Dr. Amany M. Maher**, Faculty of medicine, Ain Shams University, for giving me this chance to carry out my work

under her supervision. My deepest thanks for her generous help in diagnosis and selection of patients for the present study, and for her valuable guidance, and for her great efforts during performing the statistical part of this study.

I would like also to thank **Prof. Dr. Naglaa A. Samir**, Professor of Pathology Department, Faculty of Medicine, Ain Shams University for her efforts and help during this work.

List of Contents

Page No.

•	Acknowledgment	
•	List of tables	I
•	List of Figures	.III
•	List of Abbreviation	. IV
•	Introduction	1
•	Aim of the work	7
•	Chapter 1 Breast cancer	8
	Epidemiology of breast cancer	12
	Risk factors for developing breast cancer	15
	Pathology of breast cancer	28
	Histology of breast cancer	37
	Diagnosis and Treatment of breast cancer	42
•	Chapter 2 Hormonal receptors and markers in breast cancer	48
	Molecular and Genetic Profile	52
	Hormonal treatment	59
	Prognostic Factors in breast cancer	63

•	Chapter 3 Prolactin receptor in breast cancer	66
	Structure and Signaling capabilities of PRLR	68
	Prolactin receptor in breast cancer	74
•	Material and Method	79
•	Results	84
•	Discussion	101
•	Summary	109
•	References	111
•	Arabic Summary	—

List of Tables

Ta	Table No. Page No.	
1-	Histopathologic findings of the 70 cases of breast carcinomas included in the study	.85
2-	Classification of breast cancer according to the type	.86
3-	The relationship between PRLR expression and type of breast cancer	.91
4-	The relationship between PRL expression and age of patients	.92
5-	The relationship between PRLR expression and grade of breast cancer	.92
6-	The relationship between PRLR expression and lymph node status	.92
7-	The relationship between PRLR expression and ER expression	.93
8-	The relationship between PRLR expression and PR expression	.94
9-	The relationship between PRLR expression and Her-2 neu expression	.94

10-	The relationship between PRLR positivity grading and type of breast cancer96
11-	The relationship between PRLR positivity grading and grade of breast cancer96
12-	The relationship between PRLR positivity grading and lymph node status of breast cancer96
13-	The relationship between PRLR positivity grading and ER expression
14-	The relationship between PRLR grading and ER grading98
15-	The relationship between PRLR positivity grading and PR expression
16-	The relationship between PRLR grading and PR grading
17-	The relationship between PRLR positivity grading and Her-2 neu expression
	The relationship between PRLR grading and Her-2 neu grading

List of Figures

Fi	Figure No. Page No.	
1-	Showing percentage of pathological types of breast cancer	
2-	A case of IDC, grade II, showing PRLR +ve expression	
3-	A case of ILC, grade II, showing PRLR +ve expression	
4-	A case of IDC, grade II, showing PRLR +ve expression	
5-	A case of IDC, grade II, showing PRLR +ve expression	
6-	A case of IDC, grade II, showing PRLR -ve expression 89	
7-	A case of ILC, grade II, showing PRLR -ve expression89	
8-	PRL receptor expression among breast cancer91	

Abbreviation List

Aa Aminoacid

ACAlkylating agent chemotherapy

AIs Aromatase inhibitors

AJCC American Joint Committee on Cancer

AsnGlycosylation site of PRLR

ASR Age Standardized Rates

BCIS Breast Cancer in situ

Bcl2 Anti apoptatic gene

BMIBody Mass Index

BRCA1 Breast Cancer Gene 1

BRCA2 Breast Cancer Gene 2

CBEClinical breast examination

CMF Cyclophosphamide Methotrexate Flurouracil

C-Src Cellular Tyrosine Kinase Protein encoded by CSK gene

Cyclin-E ... One of the key regulators of the G1/S transition in the cell cycle

DCIS Ductal Cancer in situ

EBCTCG .. Early Breast Cancer Trialists' Collaborative Group

ECD Extracellular ligand-binding domain

EGF Epidermal growth factor

EGFR Epidermal growth factor receptor

EHBCCG. Endogenous Hormones and Breast Cancer Collaborative Group

EPIC European prospective investigation in cancer

EpoR Erythropoietin receptor

ER Estrogen receptor

GHR Growth hormone receptor

HBL 100 ... Human breast epithelial cell line

Her-2 Human epidermal growth factor receptor2

HT Hormonal Therapy

ICDIntracellular signalling domain

IDCInvasive duct carcinoma

IFNAR1 Interferone receptor type 1

IGFInsulin-like growth factor

IGFBP Insulin growth factor binding protein

IHCImmunohistochemistry

ILCInvasive lobular carcinoma

JAK2 Janus Kinase

KI 67 Protein encoded on the MKi67 gene for cellular proliferation

LCISLobular Cancer in situ

m(Ab) Monoclonal antibody

MECC Middle East Cancer Consotrium

MRI Magnetic resonant image

NCI National Cancer Institute

Nek 3 Serine/thereonine-protein kinase encoded by the NEK3 gene

NHS Nurse Health Study

P53Protein 53 (tumor suppressor protein) encoded by TP5 gene

PALB2 Partner and localizer of BRCA2 gene

PBSPhosphate buffered saline

PCR Polymerase chain reaction

PRProgesterone receptor

PRL Prolactin

PRLBP Prolactin binding protein

PRLR Prolactin Receptor

PRLRi Intermediate Prolactin Receptor isoform

PS2 The human pS2 gene is specifically expressed under estrogen transcriptional control in a subclass of estrogen receptor-containing human breast cancer cells

S1Short form of prolactin receptor

SEER Surveillance, Epidemiology, and End Results Program

SERMs Selective estrogen receptor modulators

SHBG Sex hormone binding globulin

SHP-2 SHP-1 and SHP-2 are two SH2 domain-containing tyrosine phosphatases

SPFS-Phase Fraction

STAT5 Signal transducer and activator of transcription

T47D Human ductal breast epithelial tumour cell line

TMTrans membrane domain

TPoR Thrombopoietin receptor

WHS Women Health Study

Introduction

Breast cancer in women is a major public health problem throughout the world as it is the most common cancer among women in both developed and developing countries. One in ten of all new cancers diagnosed worldwide each year is a cancer of the female breast. It is also the principal cause of death from cancer among women worldwide. More than 1.1 million cases are diagnosed and more than 410,000 patients die of it worldwide (Ferlay et al., 2004).

Breast cancer in Egypt

Over the last few years, Cancer Registries in North Africa (Morocco, Algeria, Tunisia, Libya and Egypt) increased in number from one to nine (**Roberto et al., 2009**).

In Egypt, breast cancer is the most common cancer among women, representing 18.9% of total cancer cases (Elatar, 2002).

Histologic types of breast tumor

The most common histologic types of breast cancer are ductal and lobular carcinoma. Ductal carcinoma in situ constitutes 80-85%, while lobular carcinoma accounts for only about 5% (**Li & Daling, 2007**).

With respect to tumor biology, ductal carcinoma in situ is considered a precurser of invasive breast cancer (Warnberg et al., 2001 & Li et al., 2006).

With respect to invasive disease, approximately 70-73% of invasive breast cancers in developed countries are invasive ductal carcinoma and 13-16% are invasive lobular carcinomas. The remaining 15% of invasive cases is composed of a heterogenous group of several histological variants, each of which account for no more than 2% of all invasive cases (**Levi et al., 2003**).

Molecular / genetics profile

Molecular and genetics markers are widely used to discriminate subtypes of breast cancer. The distinction of tumor subtypes on the basis of tumor marker expression, particularly the distinction between tumors that express estrogen receptor (ER+) and those that do not (ER-), Correlates well with previously described phenotypic classification and has prognostic significance. Individual assays for tumor markers, including PR, HER2, P53, epidermal growth factor receptor, and especially ER, have become common clinical practice because of their utility in selecting targeted therapies and in predicting clinical course (**Li et al., 2003**).

Prolactin

PRL is a polypeptide hormone secreted by the anterior pituitary. It functions systemically as a classical endocrine factor. PRL is known since many decades to be a potent differentiation factor for the mammary epithelium (Ben-Jonathan et al., 2008).

It is a 598 amino acid residues (aa) glycoprotein with an electrophoretic mobility of 80-85 kDa. Upon ligand binding and sequential dimerisation it activates multiple signalling systems including Jak2/STAT5, STAT3, MAPKp44/42 and PI3K pathways (Ben-Jonathan et al., 2008).

PRL exerts its actions via prolactin receptor (PRLR), a member of the cytokine receptor superfamily. These receptors are nontyrosine kinases, single-pass transmembrane proteins organized into three domains: an extracellular ligand binding domain (ECD), a hydrophobic transmembrane domain (TM) and an intracellular signalling domain (ICD). Multiple PRLR isoforms resulting from alternative splicing events have been identified. Most of them are similar in their ECD, but differ in the intracellular part (Clevenger et al., 2003).

Thus, multiple isoforms potentially can activate distinct intracellular signalling events. The long receptor isoform was studied in details (Clevenger et al., 2003). It has been suggested that the long isoform is responsible for the pro-