

# The Role Of Optical Coherence Tomography (OCT)In Management Of Diabetic Retinopathy

Essay submitted for partial fulfillment of Master degree in Ophthalmology

# Presented By Soufy Sabry Ahmed Mohamed (M.B.B.Ch)

#### Under supervision of

#### Dr.Ossama Abdel Moneam Abdel Aziz Raslan

Professor of Ophthalmology
Faculty of Medicine Ain Shams University

#### Dr.Hisham MohamedKhairy Abdel Dayem

Assistant Prof. of Ophthalmology Faculty of Medicine-Ain Shams University

Faculty of Medicine
Ain Shams University
2013



# الْعَلَيْمُ الْمَكِيمُ الْمَكِيمُ الْمَكِيمُ الْمَكِيمُ الْمَكِيمُ الْمَكِيمُ الْمَكِيمُ الْمَكِيمُ الْمَكِيمُ



سورة البقرة آية رقم:(32)



First, and foremost, thanks are for ALLAH, to whom I relate any success in achieving any work in my life.

I would like to express my cordial thanks and grateful appreciation to **Prof. Dr. Ossama Abdel Moneam Raslan**, Professor of ophthalmology, Faculty of Medicine, Ain shames University.

His limitless help, generous cooperation, valuable advice and kind encouragement are beyond acknowledgment. Special gratefulness and much regards to **Dr. Hisham Mohamed Khairy**, Assistant Prof. of ophthalmology, Faculty of Medicine, Ain shames University. For his helpful, close experienced supervision and effort in finishing this work.

Last but not least, I owe special thanks to my family and all my friends for their continuous encouragement and valuable support, without them, this work wouldn't have been possible.



# **CONTENTS**

| Title                                                               | Page |
|---------------------------------------------------------------------|------|
| LIST OF FIGURES                                                     | ii   |
| LIST OF TABLES                                                      | vii  |
| INTRODUCTION                                                        | 1    |
| AIM OF THE WORK                                                     | 4    |
| CHAPTER 1: Anatomy of the macula                                    | 5    |
| CHAPTER 2: Macular edema                                            | 16   |
| CHAPTER 3:Pathogenesis of Diabetic macular edema                    | 27   |
| CHAPTER 4: Photoreceptors changes in Diabetic macular edema         | 42   |
| CHAPTER 5:Introductoin to OCT                                       | 55   |
| CHAPTER 6: Diabetic O.C.T Studies (Time-Domain and Spectral-Domain) | 69   |
| CHAPTER 7: Ultra high resolution OCT                                | 86   |
| CHAPTER 8: Value of OCT in diagnosis                                | 97   |
| <b>CHAPTER 9:</b> Value of OCT in treatment follow up               | 136  |
| SUMMARY                                                             | 157  |
| REFERENCES                                                          | 160  |
| ARABIC SUMMARY                                                      | -    |

#### LIST OF FIGURES

| Fig. | Title                                                                                        | Page |
|------|----------------------------------------------------------------------------------------------|------|
| 1    | Normal ophthalmoscopic appearance of the retina to show the macula lutea.                    | 5    |
| 2    | Important anatomical landmarks at the posterior pole                                         | 7    |
| 3    | Light micrograph of the macula                                                               | 9    |
| 4    | Cross section of the fovea                                                                   | 10   |
| 5    | blood supply of retina                                                                       | 13   |
| 6    | The fovea,FAZ,foveola and umbo                                                               | 14   |
| 7    | OCT display standard resolution of normal macula                                             | 15   |
| 8    | Macular edema                                                                                | 18   |
| 9    | Diadetic macular edema                                                                       | 27   |
| 10   | Mechanism of diabetic macular edema                                                          | 28   |
| 11   | VEGF Cascade                                                                                 | 34   |
| 12   | Macular edema                                                                                | 38   |
| 13   | Vitreomacular traction                                                                       | 41   |
| 14   | Stiles-Crawford effect                                                                       | 43   |
| 15   | OCT of patient with diabetic macular edema                                                   | 45   |
| 16   | OCT of patient with diabetic macular edema                                                   | 46   |
| 17   | Simplified digram of synaptic organization of primate retina                                 | 47   |
| 18   | Pattern of photoreceptor IS/OS junction & ELM withen 500µm from center of the fovea.         | 53   |
| 19   | IS/OS segmentation &photoreceptor outer segment topographical maps in diabetic macular edema | 54   |
| 20   | Photography of early retinal imaging protype instrument                                      | 56   |
| 21   | Value of low coherence light                                                                 | 58   |
| 22   | An interferometer                                                                            | 61   |
| 23   | Image generation in OCT                                                                      | 66   |

| Fig.<br>No. | Title                                                                              | Page |
|-------------|------------------------------------------------------------------------------------|------|
| 24          | OCT 1                                                                              | 67   |
| 25          | OCT 2                                                                              | 67   |
| 26          | OCT 3                                                                              | 68   |
| 27          | Schematic of TD-OCT imaging system                                                 | 70   |
| 28          | Schematic of SD-OCT imaging system                                                 | 71   |
| 29          | Difference in image resolution between TD & SD OCT                                 | 76   |
| 30          | Scan of normal eye in TD & SD OCT                                                  | 77   |
| 31          | Segmentation with SD-OCT                                                           | 78   |
| 32          | Normal longitudinal OCT/SLO image                                                  | 79   |
| 33          | Different positioning of retinal boundaries in OCT devices                         | 81   |
| 34          | Cross –sectional image of normal neurosensory retina by SD-OCT                     | 82   |
| 35          | Normal retina by Heildelberg Spectralis OCT                                        | 82   |
| 36          | Zeiss Stratus                                                                      | 83   |
| 37          | Topcon OCT                                                                         | 83   |
| 38          | Copernicus OCT                                                                     | 84   |
| 39          | Zeiss Cirrus OCT                                                                   | 84   |
| 40          | OptovueRTvue OCT                                                                   | 85   |
| 41          | Heidelberg Spectralis OCT                                                          | 85   |
| 42          | Schematic of ultrahigh resolution FD OCT system                                    | 88   |
| 43          | RTvue OCT of normal retinal structure                                              | 90   |
| 44          | UHR SD-OCT of normal retina                                                        | 91   |
| 45          | UHR OCT for detailed visualization of retinal structure                            | 91   |
| 46          | Adaptive optics of UHR OCT                                                         | 92   |
| 47          | 3-D UHR OCT imaging of macula                                                      | 93   |
| 48          | UHR OCT show thining of outer nuclear layer & loss of photoreceptor IS/OS junction | 96   |
| 49          | Scan protocols suitable for macula                                                 | 100  |

| Fig.<br>No. | Title                                                                                                                     | Page |
|-------------|---------------------------------------------------------------------------------------------------------------------------|------|
| 50          | Line scan                                                                                                                 | 101  |
| 51          | Radial line scan                                                                                                          | 101  |
| 52          | Macular thickness map                                                                                                     | 102  |
| 53          | Fast macular thickness map                                                                                                | 102  |
| 54          | Raster lines                                                                                                              | 104  |
| 55          | Grey scale OCT scan of normal retina in region of foveal depression                                                       | 105  |
| 56          | OCT of normal macula                                                                                                      | 107  |
| 57          | OCT showing diffuse DME using TD & SD                                                                                     | 109  |
| 58          | OCT showing cystoid DME using TD & SD                                                                                     | 110  |
| 59          | Cystoid macular edema by SD-OCT                                                                                           | 111  |
| 60          | Subfoveal serous retinal detachement                                                                                      | 112  |
| 61          | Subfoveal serous retinal detachement                                                                                      | 112  |
| 62          | Epi-retinal membranes (pre-retinal gliosis)                                                                               | 114  |
| 63          | Epi-retinal membranes (pre-retinal gliosis)                                                                               | 115  |
| 64          | Taut posterior hyaloids membrane                                                                                          | 116  |
| 65          | Fovealtractional retinal detachment                                                                                       | 117  |
| 66          | Vitreomacular traction                                                                                                    | 118  |
| 67          | Vitreomacular traction                                                                                                    | 118  |
| 68          | Different lesions in OCT                                                                                                  | 120  |
| 69          | OCT shows fibrous scar                                                                                                    | 120  |
| 70          | Central subfield mean thickness                                                                                           | 124  |
| 71          | Normal retinal map                                                                                                        | 126  |
| 72          | False colour map                                                                                                          | 127  |
| 73          | False colour map                                                                                                          | 127  |
| 74          | Clinically significant DME                                                                                                | 128  |
| 75          | Relationship between spectral domain optical coherence tomography pathologic changes and fluorescein angiography findings | 131  |

| Fig. | Title                                                                                                                                    | Page |
|------|------------------------------------------------------------------------------------------------------------------------------------------|------|
| 76   | Relationship between spectral domain optical coherence tomography pathologic changes and fluorescein angiography findings                | 132  |
| 77   | Relationship between spectral domain optical coherence tomography (SD-OCT) pathologic changes and fluorescein angiography (FA) findings. | 133  |
| 78   | Relationship between spectral domain optical coherence tomography (SD-OCT) pathologic changes and fluorescein angiography (FA) findings. | 134  |
| 79   | O.C.T. Following Focal Laser Photocoagulation.                                                                                           | 139  |
| 80   | O.C.T. Following Focal Laser Photocoagulation.                                                                                           | 140  |
| 81   | O.C.T. Following Focal Laser Photocoagulation.                                                                                           | 141  |
| 82   | O.C.T. Following Focal Laser Photocoagulation.                                                                                           | 141  |
| 83   | Fluorescein angiography and OCT macular changes after Triamcinolone acetonide Injection                                                  | 143  |
| 84   | O.C.T showing effect of Intravitreal injection of bevacizumab on retinal thickness.                                                      | 146  |
| 85   | Representative case studies of transfoveal optical coherence tomography in a patient on ranibizumab                                      | 147  |
| 86   | Representative case studies of transfoveal optical coherence tomography in a patient on ranibizumab                                      | 149  |
| 87   | O.C.T. Guided Pars Plana Vitrectomy                                                                                                      | 149  |
| 88   | O.C.T. Guided Pars Plana Vitrectomy                                                                                                      | 149  |
| 89   | O.C.T. Guided Pars Plana Vitrectomy                                                                                                      | 150  |
| 90   | O.C.T. Guided Pars Plana Vitrectomy                                                                                                      | 151  |
| 91   | O.C.T Guided Pars Plana Vitrectomy for Vitromacular traction.                                                                            | 152  |
| 92   | O.C.T Guided Pars Plana Vitrectomy for Vitromacular traction.                                                                            | 152  |
| 93   | OCT Guided Pars Plana Vitrectomy for Subfoveal Serous Retinal Detachment.                                                                | 153  |
| 94   | OCT Guided Pars Plana Vitrectomy for Subfoveal Serous Retinal Detachment.                                                                | 153  |
| 95   | OCT Guided Pars Plana Vitrectomy for Subfoveal Serous Retinal                                                                            | 153  |

| Fig. | Title                                                                       | Page |
|------|-----------------------------------------------------------------------------|------|
|      | Detachment.                                                                 |      |
| 96   | OCT Guided Pars Plana Vitrectomy for Taut Posterior Hyloid Membrane (TPHM). | 154  |
| 97   | Structural predictives of visual improvement in DME patients.               | 156  |

### LIST OF TABLES

| Table<br>No. | Title                  | Page |
|--------------|------------------------|------|
| 1            | Mean retinal thickness | 122  |
| 2            | Retinal volume         | 122  |

#### **INTRODUCTION**

Diabetic retinopathy (DR) remains the leading cause of vision loss and blindness in people of working age, in spite of the fact that current treatments are effective. Vision loss occurs in DR due to the development of maculopathy, especially diabetic macular edema, and due to proliferative diabetic retinopathy.

The traditional gold standard for the diagnosis of DME includes fundus biomicroscopy, fundus stereophotography or both. Fluorescein angiography is also used to evaluate patients with DME; however, leakage on fluorescein angiography does not equate to retinal edema.

Fluorescein angiography may reveal vascular leakage, but does not provide quantitative information. Traditional method of evaluatingmacular thickening, including slit lamp biomicroscopy and stereo fundus photography, are relatively insensitive to small changes in retinal thickness. Thus, several new techniques for quantitatively measuring retinal thickness have been explored.

Optical Coherence Tomography (OCT) is one of the most important diagnostic and prognostic tool in the management of DME

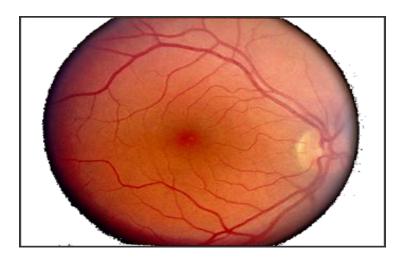
It provides a non-invasive high resolution imaging of vitroretinal interface, retina, and subretinal space.

It also allows evaluation of morphologic changes that occur in DME, including compact retinal thickening, intraretinal cystic changes, subretinal fluid, and vitreomacular traction.

OCT parameters have been shown to be only moderately correlated with visual acuity. However, improvements in technology leading to higher resolution, faster acquisition speed, image registration, and three-dimensional imaging that are available with newer spectral domain OCT models may allow future identification of valid OCT-derived surrogate markers for visual function in patients with diabetes.

The improved resolution allows for clear delineation of each retinal layer as distinct entities, like the ability to differentiate inner segment/outer segment (IS/OS) junction from the retinal pigment epithelium and photoreceptor layer details such as the external limiting membrane (ELM).

Photoreceptor outer segment (PROS) length can be quantitatively assessed using Cirrus HD-OCT. The PROS measures may be more directly related to visual function. Photoreceptor outer segment length may be a useful physiologic outcome measure, both clinically and as a direct assessment of treatment effects.


Spectral-domain optical coherence tomography showed that the integrity of the external limiting membrane and inner and outer segments of the photoreceptors was more strongly correlated with best-corrected visual acuity when compared with central subfield thickness in diabetic macular edema.

The response to treatment can be objectively followed up whether performing laser photocoagulation, pharmacologic treatment, or surgery. Newer OCT machines allow quantitative measurement of macular thickness and volume and can track changes in response to therapy.

# AIM OF THE WORK

This review of literature aims to describe and analyse the role of Optical Coherence Tomography (OCT) in assessment in diagnosing and treatment follow up of maculopathy associated with Diabetic Retinopathy.

# ANATOMY OF THE MACULA



**Fig.1:** Normal Ophthalmoscopic appearance of the retina to show the macula lutea (*Quoted from:Yamada., 1982*)

#### **Macroscopic Anatomy:**

The terms macula, macula lutea, posterior pole, area centralis, jovea, and foveola have created confusion among anatomists and clinicians (*Orth et al, 1977*).

The macula is a histologically and clinically distinct area of the retina sometimes referred to as posterior pole or area centralis (*Anthony et al, 1997*)a.

This region of the retina, located in the posterior fundus temporal to the optic disc, is demarcated approximately by the