

Ain Shams University
Faculty of Woman for Arts,
Science and Education
Cairo, Egypt.

Removal of water pollution by nonirradiated and gamma irradiated Na-A synthetic zeolites

A Thesis

Submitted for Partial Fulfillment of the Requirement For The Degree of Master of Science (Physical Chemistry).

Presented by Walaa Moanes Mohamed Asker

Supervisors

Prof. Dr. Nadia A. Youssef

Prof. of Physical Chemistry
Faculty of Woman for Arts, Science and Education
Ain Shams University, Egypt

Prof. Dr. Mohamed M. Selim Dr. Ahmad Shafiek Nada

Prof. of Physical Chemistry National Research Center, Dokki, Cairo Egypt

Assistant Prof. of Physiology National Center for Radiation Research and Technology Atomic Energy Authority, Nasr City, Cairo, Egypt **Ain shams University**

Faculty of Woman for Arts,

Science and Education,

Chemistry Department.

Student Name : Walaa Moanes Mohamed

Scientific Degree : B.Sc

Department : Chemistry

Name of Faculty : University College for Girls.

University : Ain Shams University.

B.Sc. Graduation Date: ۲۰۰۳

M.Sc. Graduation Date: 7.17

Ain shams University
Faculty of Woman for Arts,
Science and Education
Cairo, Egypt.

Removal of water pollution by nonirradiated and gamma irradiated synthetic zeolite

Supervised by: APPROAVED

Prof. Dr. Nadia A. Youssef Prof. of Physical Chemistry

Prof. Dr. Mohamed M. Selim

Prof. of Physical Chemistry

Dr.Ahmad Shafiek Nada

Assistant Prof. of Physiology

APPROAVED

Head of Chemistry Department

Prof. Dr.

To my mother, father, my
lovely husband and all my
family

I am very grateful to all of
you for your support,
kindness and love
walaa

إزاله الملوثات من الماء بإستخدام الزيوليتات المصنعه قبل وبعد التعرض لأشعه جاما

مقدمة من

ولاء مؤنس محمد عسكر

للحصول على درجة الماجستير في العلوم

(كيمياء فيزيائية)

تحت اشر اف

ا.د. نادية عبد الحكيم يوسف

استاذ الكيمياء الفيزيائية

كلية البنات جامعة عين شمس

د.احمد شفیق ندا

ا.د.محمد محمد سليم

أستاذ مساعد الفسيولوجي المركز القومي لبحوث وتكنولوجيا الأشعاع هيئه الطاقه الذريه

أستاذ الكيمياء الفيزيائية المركز القومي للبحوث

(رسالة ماجستير)

اسم الطالبة : ولاء مؤنس محمد عسكر

عنوان الرسالة: إزاله الملوثات من الماء بإستخدام الزيوليتات المصنعه قبل وبعد التعرض لأشعه جاما

اسم الدرجة : ماجستير في العلوم (كيمياء فيزيائية)

لجنة الاشراف

ا.د. نادية عبد الحكيم يوسف

استاذ الكيمياء الفيزيائية

كلية البنات جامعة عين شمس

ا.د.محمد محمد سليم د.احمد شفيق ندا

أستاذ الكيمياء الفيزيائية أستاذ مساعد فسيولوجي الشعاع المركز القومي لبحوث وتكنولوجيا الأشعاع

هيئه الطاقه الذريه

جامعة عين شمس كليكة البنات للآداب والعلوم والتربيكة قسراء الكيمياء

اسم الطالبة: ولاء مؤنس محمد

الدرجة العلمية: بكالوريوس علوم

القسم التابع له: الكيمياء

اسم الكليـــة: البنات للاداب والعلوم والتربية

الجامع قد عين شمس

سنة التخرج: مايو ٢٠٠٣

سنة المنح: ٢٠١٣

ACKNOWLEDGMENT

Praise and thanks be to Allah, the most merciful for assisting and directing me the right way.

I would like to express my sincerest thanks to **Prof Dr.**Nadia A. Youssef, Professor of Physical Chemistry, Chemistry

Department, and College for Girls for Arts, Science and Education,

Ain Shams University for continuous supervision, advice and support.

I would like also to express my deepest gratitude to **Prof. Dr. M. M. Selim, Professor** of Physical Chemistry, Department of Physical Chemistry, Surface Chemistry and Catalysis lab, National Research Center for suggesting the point of this research and for his continuous advice and enhancement throughout this work.

I would like also to express my thanks to **Dr. Ahmad Shafiek Nada**, Assistant Prof. of Physiology, National Center For Radiation Research and Technology (NCRRT), Atomic Energy Authority, for his help and advice during the work.

I would like also to express my thanks to my college Dr. Fatma and Hend for these valuable discussion and continuous supervision.

Last, but not least, I would like to thank my family especially my mother, father, my lovely husband and my child for their continuous love, encouragement, and support that kept me motivated during my studies and I give this work for them and all my family.

CONTENTS	
	Page
ACKNOWLEDGMENT	I
CONTENTS	II
LIST OF TABLES	VI
LIST OF FIGURES	XI
LIST OF SYMBOLS AND ABBREVATIONS	XIX
AIM OF THE WORK	XX
ABSTRACT	XXI
CHAPTER (I)	
INTRODUCTION	
I.\. Water Pollution.	١
I. Y. Heavy Metals.	۲
I. Y. Lead and its impact on human health.	٤
I. ۲, ۲. Cadmium and its impact on human health.	٥
I. ۲, ۳. Copper and its impact on human health.	٧
I. T. Heavy Metal Waste Water Treatment Techniques.	٨
I. ٣, ١. Chemical Precipitation	٨
I. ٣, ٢. Adsorption.	11
I. ٣, ٣. Membrane filtration.	1 ٤
I. T, E Coagulation and flocculation.	١٦
I. ^r ,°. Flotation.	1 \
I. ٣,٦. Electrochemical treatment.	
I.", V. Ion exchange.	١٨
I. ^{\(\xi\)} . Molecular sieve.	۲.
I.º. Zeolites.	71
I.o,\. The comparative ion exchange capacities of	77
natural sedimentary and synthetic zeolite.	7 £
I.o, 7. Structure of zeolite.	
۱٫۰,۳. Applications of zeolite.	77
I.º,٤. Na-A Zeolite	۲۸
I.º,٤,١ Structure of Na-A zeolite	٣.

I.o,٤,٢. Characerization of Na-A zeolite	٣٣
I.\(\frac{1}{2}\). Ion-Exchange Theory.	٣٨
I. ٦, ١. Ion exchange properties of zeolites	٣9
I.V. Atomic Absorption	٤١
I. V, \. Atomic absorption calibration	٤٢
I.^. Gamma rays.	٤٣
I.A, \. Effect of radiation on zeolites:	٤٤
CHAPTER II	
EXPERIMENTAL	
II.\. Starting Materials.	٤٧
II. Y. Method of Preparation.	٤٨
II. T. Apparatus and Techniques.	٤٨
II. [£] . Characterization of the Prepared Synthetic Na-A	01
Zeolite	
II.°. Irradiation of zeolite	01
II.\(\forall \) Adsorption Technique.	۲٥
II.7,1 Batch adsorption experiments (Static	07
technique).	
II.٦,٢ Fixed bed experiments.	٥٣
II. V. Effect of the presence of competing Ions on metal	00
removal	
II. ^A . Effect of time	٥٦
II. ⁹ . Effect of pH.	٥٦
II.9.1 Stability experiment: (pH adjustment by N	٥٦
NaOH or ',' N HNO _r)	
II. 9. Y Adjustment pH by (Boric Acid –Borax Buffer).	٥٦
CHAPTER III	
RESULTS AND DISCUSSION	
III.\ Characteristics of Adsorbent Material	·
II.\.\ X-ray characterization of prepared Na-A zeolite	7
III. ۱, ۲ IR Spectra of prepared Na-A zeolite:	79
III. ۱٫۳ SEM (Scanning electron microscopy):	٧٥
III. The Effect of Initial Concentration:	٧٨
III. Y, Batch adsorption experiments (Static Way):	٧٨
Lead ions.	٧٩

Cadmium ions.	٨٤
Copper ions.	٨٩
III. ۲, ۲. Fixed bed column experiments (dynamic	97
method):	
Lead ions:	91
Cadmium ions:	99
Copper ions	١
III. T. Effect of Metal Ions Competition on Their	1.7
Removal by Na-A Zeoilte.	
III. ", Adsorption of Pb" in binary system.	1 . ٤
Adsorption of Pb ⁺⁺ in synthetic waste water	1 • £
contain (Pb ^{Y+} -Cu ^{Y+}) mixture	A A
Adsorption of Pb ^{*+} in synthetic waste water	١٠٨
contain (Pb ^{'+} -Cd ^{'+}) mixture. III. ", \tau. Adsorption of Cd \tau in binary system	115
III. 1, 1. Adsorption of Cd — in binary system	112
Adsorption of Cd ^{*+} in synthetic waste water	115
contains (Cd ^{*+} - Pb ^{*+}) mixture :	
Adsorption of Cd' in synthetic waste water	114
contain (Cd ^{r+} - Cu ^{r+}) mixture.	
III. ۳, ۳. Adsorption of Cu + in binary system.	175
Adsorption of Cu ^{*+} in synthetic waste water	175
contains (Pb ^{'+} - Cu ^{'+}) mixture:	
Adsorption of Cu ^{'+} in synthetic waste water	١٢٨
contains (Cd ^{r+} - Cu ^{r+}) mixture.	
III. ² . Time Effect:	1 44
Lead ions.	١٣٣
Cadmium ions.	172
Copper ions.	140
III.º. PH Effect.	141
III. ^o , \. Effect of pH on stability of solution	177
Lead ions.	141
Cadmium ions.	١٣٧
Copper ions.	١٣٧

III.º. ^r . pH Adjustment by (Boric Acid –Borax Buffer).	١٣٨
Lead ions.	189
Cadmium ions.	12.
Copper ions.	1 2 1
Smmary	1 2 2
Conclusions	1 2 9
Refferences	107

LIST OF TABLES

TAB. NO.	TITLE	PAGE
Table (1)	Zeolite IR assignments (in cm ⁻¹)	٣٥
Table (۲)	The results of x - ray for zeolite Na-A samples and standard ASTM card No: rq_rrr:	٦١
Table (*)	Effect of x-ray data for gamma irradiated Na-A synthetic zeolite with ۲,0 kGy	٦٣
Table (٤)	The results of x-ray data for gamma irradiated Na-A zeolite with ° kGy	70
Table (°)	The results of x ray for irradiated zeolite Na-A with ' kGy.	٦٧
Table (٦)	Represent peak intensity of Na-A zeolite different doses of gamma radiation.	٧٤
Table (Y)	The results show ion exchange of lead ions by none irradiated Na-A zeolite.	٧٩
Table (^)	The results show adsorption of lead ions by ', o kGy irradiated Na-A zeolite.	۸١
Table (9)	The results show adsorption of lead ions by o kGy Na-A irradiated zeolite.	۸۲
Table () ·)	The results show adsorption of lead ions by ' · kGy irradiated Na-A zeolite.	۸۳
Table (۱۱)	The results show adsorption of cadmium ions by none irradiated Na-A zeolite	۸٥
Table (۱۲)	The results show adsorption of cadmium ions by ۲,0 kGy irradiated Na-A zeolite.	٨٦
Table (۱۳)	The results show adsorption of cadmium ions by ° kGy irradiated Na-A zeolite.	۸٧
Table (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	The results show adsorption of cadmium ions by ' kGy irradiated Na-A zeolite.	٨٨
Table (10)	The results show adsorption of copper ions by non irradiated Na-A zeolite	٨٩
Table (۱٦)	The results show adsorption of copper ions by ۲,0 kGy irradiated Na-A zeolite.	91

TAB. NO.	TITLE	PAGE
Table (\\')	The results show adsorption of copper	97
	ions by o kGy irradiated Na-A zeolite.	
Table (۱۸)	the results show adsorption of copper ions	98
	by \ \ kGy irradiated Na-A zeolite.	
Table (۱۹)	Represents ionic radii, hydrated ionic	97
	radii and free energies of hydration for	
	certain ions.	
Table ($^{\gamma}$)	The results show adsorption of lead ions	٩٨
	by non irradiated Na-A zeolite.	
Table (۲۱)	The results show adsorption of cadmium	99
	ions by non irradiated Na-A zeolite	
Table (۲۲)	The results show adsorption of copper	١
	ions by none irradiated Na-A zeolite	
Table (۲۳)	The results show competition effect of	١٠٤
	(Cu ^{*+} -Pb ^{*+}) mixture on lead ions removal	
Table (۲٤)	The results show competition effect of	1.0
	(Cu ^{*+} -Pb ^{*+}) mixture on lead ions removal	
	by ۲,0 kGy irradiated Na-A zeolite.	
Table (۲٥)	The results show competition effect of	١٠٦
	(Cu ^{*+} -Pb ^{*+}) mixture on lead ions removal	
	by ° kGy irradiated Na-A zeolite.	
Table (۲٦)	The results show competition effect of	١.٧
	(Cu ⁺ -Pb ⁺) mixture on lead ions removal	
	by ' · kGy irradiated Na-A zeolite.	
m 11 /91/	TTI 1 1 20 20	A A
Table (TV)	The results show competition effect of	1 • ٨
	(Cd ^{*+} -Pb ^{*+}) mixture on lead ions removal	
TD 1.1 . (YA)	by non irradiated Na-A zeolite.	1.9
Table (۲۸)	The results show competition effect of	1 • 7
	(Cd ⁷⁺ -Pb ⁷⁺) mixture on lead ions removal	
T-1-1-(Y9)	by Y, o kGy irradiated Na-A zeolite.	11.
Table(۲۹)	The results show competition effect of	11 *
	(Cd ^{*+} -Pb ^{*+}) mixture on lead ions removal	
Toble (T.)	by o kGy irradiated Na-A zeolite.	111
Table (**)	The results show competition effect of	1 1 1

TAB. NO.	TITLE	PAGE
	(Cd ^{r+} -Pb ^{r+}) mixture on lead ions removal	
	by \ \ kGy irradiated Na-A zeolite.	
Table (٣١)	The results show adsorption effect of the	118
	presence of competing (Cd ^{*+} -Pb ^{*+}) on	
	cadmium ions removal by on irradiated	
	Na-A zeolite.	
Table (٣٢)	The results show adsorption effect of the	110
	presence of competing (Cd ^{*+} -Pb ^{*+}) on	
	copper ions removal by 7,0 kGy	
	irradiated Na-A zeolite.	
Table (٣٣)	The results show adsorption effect of the	١١٦
	presence of competing (Cd ^{*+} -Pb ^{*+}) on	
	copper ions removal by o kGy irradiated	
	Na-A zeolite.	
Table (٣٤)	The results show adsorption effect of the	117
	presence of competing (Cd ^{*+} -Pb ^{*+}) on	
	copper ions removal by \ kGy irradiated	
	Na-A zeolite	
Table (۳°)	The results show adsorption effect of the	114
	presence of competing (Cd*-Cu*+) on	
	copper ions removal by non irradiated Na-	
	A zeolite.	119
Table (٣٦)	The results show adsorption effect of the	119
	presence of competing (Cd ^{Y+} -Cu ^{Y+}) on	
	copper ions removal by Y,0 kGy	
	irradiated Na-A zeolite.	
Table (۳۷)	The results show adsorption effect of the	17.
	presence of competing (Cd '+-Cu'+) on	
	copper ions removal by o kGy irradiated	
T.1.1 (WA)	Na-A zeolite.	171
Table (٣٨)	The results show adsorption effect of the	' ' '
	presence of competing (Cd ^{*+} - Cu ^{*+}) on	
	copper ions removal by \ kGy irradiated	
Toble (*4)	Na-A zeolite.	175
Table (٣٩)	The results show adsorption effect of the	112
	presence of competing (Cu ^{Y+} - Pb ^{Y+}) on	