

(Validation of Radiochemical Separation for Uranium Assay in Different Matrices)

Presented by Ahmad Rabie El shahat Agha

Assistanat Lecturer

Nuclear and Radiological Regulatory Authority

A Dissertation Submitted for the Philosophy Doctor (Ph.D) degree of science in (Inorganic Chemistry)

THESIS ADVISORS

Prof. Dr. Ebtissam Ahmed Saad

Prof. Dr. Sayed Ali Elmongy

Professor of Inorganic Chemistry

Faculty of Science
Ain Shams University

Professor of Radioactive Measurements

Nuclear and Radiological Regulatory

Authority

Approval Sheet

"Validation of Radiochemical Separation for Uranium Assay in Different Matrices"

By

Ahmad Rabie El Shahaat Agha

has been reviewed and approved by the following

THESIS ADVISORS

Approval

Prof. Dr. Ebtisaam Ahmed Saad

Professor of In Organic Chemistry,

Faculty of Science, Ain Shams University.

Prof. Dr. Sayed Ali Elmongy

Professor of Radioactive measurements,

Nuclear and Radiological Regulatory Authorit

Head of chemistry Department

Prof. Dr. Ibrahim H.A. Badr

To

My LIFE, THE GREATEST LOVE (Egypt)

TO

Those who gone away from us to the real life

My great Father My great Mother

(May Allah have mercy on them)

Acknowledgment

Above all and first of all, All gratitude is due to almighty **ALLAH**, by his grace and care, the completion of this work was possible, and I hope this work will be helpful.

The author is greatly indebted to **Prof. Dr. Ebtissam Ahmed Saad,** Prof. of Inorganic Chemistry, Chemistry Department, Ain shams University, for her science supervision, continuous guidance, valuable advice, and reviewing.

The author is greatly gratitude to **Prof. Dr. Sayed Ali El-Mongy**, (NRRA), for his supervision, continuous guidance, reviewing, the revision scientific help, and valuable advice.

*Words are not enough to thank my Spiritual father (Prof. Dr. Kariem El- Adham) for all things .

The author's thanks are due to all persons who extended measurable cooperation for the implementation of this work and all my colleagues in Nuclear Fuel cycle Department Specially the head of the department **Prof. Dr. M. Abd El-geliel** .

* Special thanks are given to my dear friends:

Dr. Sameh shaban , Dr. Waleed fekry , Dr. Mohamed El-Keshawy and Dr. Mohamed El-Saied for their kind cooperation .

Ahmad Rabie Agha

Contents

List of figures
List of tablesIV
AbstractV
Chapter 1: INTRODUCTION
1.1. Introduction1
1.2. Scoping of this work2
1.3. Phenomenon of Radioactivity3
1.4. Sources of Ionizing Radiation3
1.4.1. Natural Radiation sources6
1.4.2. Man-made Radiation sources15
1.5.Modes of Radioactive Decay16
1.5.1. Alpha-Decay
1.5.2. Beta-Decay17
1.5.3. Gamma- Decay18
1.6.Radiation Quantities and Units19
1.7.Pathways of Radiation Exposure22
1.8.Biological Effects of Radiation25
1.9.Environmental Behavior of radionuclides in
sediments26
1.10. Uranium

1.10.1. Properties of Uranium
1.10.1.1. Chemical properties of Uranium37
1.10.1.2.Nuclear Properties of Uranium38
1.11. The nuclear fuel cycle types41
1.11.1. Stages of the nuclear fuel cycle42
1.12. Related Industrial Activities46
1.13. Nuclear fuel wastes
Chapter 2: EXPERIMENTAL
Chapter 2. EXI EXIVENTAL
2.1. Applied Measurement Techniques of Uranium49
2.2. General Aspects of Sampling Techniques50
2.2.1. Composite and Individual Samples51
2.2.2. Common Sampling Design52
2.2.3. Samples Collection
2.3. General Properties of Radiation Detector55
2.4. The systems used
2.4.1. The Non-Destructive Method (Gamma
Spectrometry assay)56
2.4.1.1. Sampling & Sample preparation for
Gamma Spectrometry56
2.4.1.2. Interaction of Gamma Ray with Matter57
2.4.1.3. Setting up of Gamma spectrometry60

2.4.1.4. HPGe detector Calibration68
2.4.1.5. Energy resolution70
2.4.1.6. Efficiency calibration
2.4.1.7. Peak to Compton Ratio81
2.4.2. The Destructive methods84
2.4.2.1. Alpha Spectrometry84
2.4.2.2. Interactions of Alpha particles with matter88
2.4.2.3. Alpha spectrometry90
2.4.2.4. The used chemicals and reagents of the present
study97
2.4.2.5. Setting up of the Used Alpha Spectrometer 100
2.4.2.6. Calculation of uranium isotopes specific
activities in the sample106
2.4.2.7. Errors Calculations108
2.4.2.8. Detection Limits114
2.4.2.9. Analytical Quality Control115
Chapter 3: RESULTS AND DISCUSSION
3.1. INTRODUCTION
3.2. Results of gamma analysis118
3.3. The Radiation Hazard Calculation Results128
3.4. Results of alpha spectrometry analysis137

Chapter 4: SUMMA	ARY AND CONCLUSION145
REFERENCES	150
Arabic summary	

List of figures

Fig. (1) Natural radiation (UNSCEAR, 2000)5
Fig. (2) Natural ²³⁸ U decay series10
Fig. (3) Natural ²³² Th decay series12
Fig.(4) Natural ²³⁵ U decay series13
Fig.(5) The natural decay series and their most important
isotopes14
Fig. (6) Environmental Pathways of Radionuclides24
Fig.(7) Possible application fields for long lived32
Fig. (8) The process of photoelectric absorption58
Fig. (9) The process of Compton scattering59
Fig. (10) The process of pair production60
Fig.(11) Cross-section diagram of HPGe detector with liquid
nitrogen reservoir'61
Fig. (12) HPGe detector with accompanying lead castle and
data acquisition system63
Fig. (13) Schematic of electronic setup64
Fig.(14) Planar HPGe detector (p-type)64
Fig. (15) Large volume coaxial HPGe detectors65

Fig.(16) Extension of the depletion region for a coaxial
detector66
Fig. (17) Electrode configurations for coaxial detectors67
Fig.(18) Gamma-ray spectrum of different radionuclides used
for hyper pure germanium energy calibration69
Fig.(19) Energy calibration curve for hyper pure germanium
gamma-ray spectrometer69
Fig. (20) Energy resolution of the HPGe detector71
Fig. (21) Gamma-ray spectrum of mixed standard source for
efficiency calibration of HPGe74
Fig. (22) Full peak efficiency curve of the used hyper pure
germanium gamma-ray spectrometer74
Fig. (23) Location of peaks in samples for the radionuclides.80
Fig. (24) Relative full peak efficiency curve of hyper pure
germanium gamma-ray spectrometer80
Fig. (25) A spectrum of ⁶⁰ Co for peak to Compton ratio
determination83
Fig. (26) Flowchart of uranium isotope radiochemical99
Fig. (27) Diagram of alpha particle with PIPS103
Fig. (28) Alpha-particle spectrometer system104
Fig. (29) The Electro deposition Cell104

Fig.(30) Alpha spectrum of mixed standard source Calculation
of the Chemical Yield105
Fig. (31) The activity concentration of ⁴⁰ K in Collected Sludge Samples121
Fig. (32) The activity concentration of ²³² Th(²²⁸ Ra) in Collected Sludge Samples
Fig. (33) The activity concentration of ²³⁸ U(²²⁶ Ra) in Collected Sludge Samples
Fig. (34) The activity concentration of ⁴⁰ K in Collected Soil Samples125
Fig. (35) The activity concentration of ²³² Th(²²⁸ Ra) in Collected Soil Samples
Fig. (36) The activity concentration of ²³⁸ U(²²⁶ Ra) in Collected Soil Samples
Fig. (37) Exposure of the workers in this case is due to external
radiation (modeled calculation)130
Fig. (38) Opening hatch at the 25 m tank133
Fig. (39) Opening hatch at the 30 m tank134
Fig. (40) Manual shoveling of the sludge the 25 m tank135
Fig. (41) Manual shoveling of the sludge the 30 m tank136
Fig. (43) The activity concentration of U234 in Water IAEA Reference samples
Fig. (44) The activity concentration of U238 in Soil IAEA Reference samples
Fig. (45) The activity concentration of U234 in Soil IAEA Reference samples
Fig. (46) The activity concentration of U235 in Soil IAEA
Reference samples144

List of tables

Table (1) Isotopic Composition of Natural Uranium4
Table (2) List of radionuclides and their half lives and photo
energies of a mixed standard gamma source73
Table (3)shows the data required for such a measurement83
Table(4) Activity Concentrations of Collected Sludge S120
Table (5) Activity Concentrations of Collected soil S124
Table (6)The calculated effective dose for the workers (tw
removal times)Opening hatch at the tank131
Table (7)The calculated effective dose for the workers (two
removal times)Manual shoveling of the sludge131
Table (8) The results of Water IAEA Reference samples138
Table (9)The results of Soil IAEA Reference samples141

Abstract

Uranium is the fuel for about 1000 nuclear reactors of various kinds that exist in the world. These reactors produce electricity, nuclear and thermo nuclear weapons, In addition to the natural uranium, uranium is discharged into the environment due to mining activities, using special military weapons and liquid and gaseous effluents from nuclear facilities.

In the radiochemical equilibrium, it consists of the isotopes ²³⁴U, ²³⁵U and ²³⁸U with the natural activity ratio of 1:0.0462:1, corresponding to amass ratio of 0.0054:0.711:99.2836 percent.

All of these three nuclides are alpha-emitters. From nuclear facilities, additional amounts of uranium are discharged into the environment. In effluents from nuclear facilities, the ratios of uranium isotopes differ very much. To be able to compare them with that from natural background,

Study of natural radiation background and exposure of human beings are of great importance, not only for practical reasons but also for radiological impact of nuclear activities, It is necessary to determine the baseline of natural radiation and radioactivity so as to distinguish man-made contamination in time and take appropriate measures to protect the environment. Secondly, the accumulation of information on natural radiation is of great value for drawing up rules and regulations on radiation protection standards. Thirdly, natural radiation is the source of exposure of human being: studies of the dose from natural radiation and its effects on health could advance

the understanding of radiation damage. Lastly, some natural radionuclides are trace elements, which play important roles in the fields of meteorology, hydrology, geology and astronomy

The main objective of the present study is to determine the uranium isotopes ²³⁴U, ²³⁵U, ²³⁸U in the different samples matrices in the environment by using destructive assay alpha spectrometry and non destructive assay gamma spectrometry.

1. INTRODUCTION

1.1 Introduction

An increasing interest has been shown in the actinide elements analysis since World War II, the determination of natural and artificial actinide isotopes is of great interest because of the potential impact of these elements on the public health, environmental and safeguards. (uranium especially).

The fallout due to weapon testes in the mid of this century, nuclear reactors effluents, planes, ships, transporting nuclear materials, satellites effluent discharges from nuclear facilities e. g uranium reprocessing plants and plutonium handling facilities, are potential sources of these isotopes.

Many radiochemical procedures for actinide determination are described, but only few of them are suitable for different types of environmental samples to be measured by destructive assy. This can be achieved by alpha spectrometry assay or by other techniques after chemical preparation of actinides, Accurate conclusions