Cairo University
Faculty of Science
Chemistry Department

Improving the Compatibility of Natural and Synthetic Polymer Blends by Radiation Treatments for Using in Practical Application

Thesis Submitted In Partial Fulfillment of the Requirements For the PhD Degree in Chemistry

To

Chemistry Department Faculty of Science Cairo University

 $\mathbf{B}\mathbf{y}$

Faten Ismail Abu-El Fadle M.Sc. Organic Chemistry (2006)

ACKNOWLEDGMENTS

Deepest thanks to Prof. Dr. Abdel Wahab M. El-Naggar, Radiation Chemistry Department, National Center for Radiation Research and Technology, for suggesting the topic of this work, his keen enthusiasm, sincere guidance and continuous supervision.

High appreciation is due to Prof. Dr. Horia M. Nizam El-Din Polymer Chemistry Department, National Center for Radiation Research and Technology for suggesting the topic of this work, her continuous supervision, her keen enthusiasm and sincere guidance.

I would like to thank Prof. Dr. Fawzy A. Attaby, and Dr. Rasha M. Faty Chemistry Department, Faculty of Science, Cairo University for their continuous supervision.

I would like to thank, Chemistry Department, Faculty of Science, Cairo University for her sincere guidance.

Special thanks to collogues and Head of Polymer Chemistry Department, National Center for Radiation Research and Technology for their help and continuous encourage.

Finally, I would like to thank my friends and family for their encouragement, love and support throughout these years.

Dedication

To my Parents may God bless their souls?

Aim of the Work

Recently, polymer blends and composites provided an economical way to produce new materials with wide properties and applications. However, the especially most important blends are those based on natural and synthetic polymers, which they are immiscible in most cases. The incompatibility in polymer blends so far has a great influence on the entire physical and chemical properties. Thus, the present work was undertaken to prepare three hydrophilic blends based on natural and synthetic polymer. These blends are based on: (1) carboxymethyl cellulose (CMC) and polyethylene glycol (PEG), (2) carboxymethyl cellulose (CMC) and polyethylene oxide (PEO) and (3) Polyacrylamide and sodium alginate (AG). These blends are miscible in water. Also, the present work was aimed at studying the effect of gamma radiation on the compatibility and the physical and chemical properties of these blends. The different polymer blends of different compositions were evaluated for different industrial and pharmaceutical applications such as removal of heavy metals from wastewater, removal of dyes from wastewater and as drug delivery systems.

Abstract

Student Name: Faten Ismail Abu El Fadle

Title of the thesis: Improving the compatibility of natural and synthetic polymer blends by radiation treatment for using in practical applications

Degree: PhD

Different polymer blends based on the natural polymers carboxymethyl cellulose (CMC) and sodium alginate as well as the synthetic polymers poly(ethylene glycol) (PEG), poly(ethylene oxide) (PEO) and poly acrylamide (PAM) were prepared by solution casting in the form of films. The common solvent used was water. The different blends prepared in this study were subjected to gamma radiation. The compatibility and structure-property behaviour of these blends was studied by differential scanning calorimetry (DSC), Fourier-Transform Infrared (FTIR) analysis, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile mechanical testing before and after irradiation. In addition, the swelling properties of different polymer blends were studied at different conditions of temperature and pH. The controlled release characters of the different blends of different drugs were investigated. In addition, the different polymer blends were used for the removal of heavy metals and dyes waste.

Keywords: Carboxymethyl cellulose, Polyethylene glycol; Polyethylene oxide, Sodium alginate, Polyacrylamide, FTIR, DSC, TGA, SEM.

Supervisors Signature

- 1- Prof. Dr. Fawzy A. Attaby
- 2- Prof. Dr. Abd El Wahab M. El Nagaar
- 3- Prof. Dr. Horia Mahmoud M. Nizam El Din
- 4- Dr. Rasha Abd El Aziz M. Faty

Prof. Dr. Mohamed A. Badawy

Head of Chemistry Department

Faculty of science-Cairo University

Approval Sheet for Submission

Thesis Title: Improving the compatibility of natural and synthetic polymer blends by radiation treatment for using in practical Applications.

Name of Candidate: Faten Ismail Abu El Fadle

This thesis has been approved for submission by the supervisors:

- 1- Prof. Dr. Fawzy A. Attaby Signature:
- 2- Prof. Dr. Abd El Wahab M. El Nagaar Signature:
- 3- Prof. Dr. Horia Mahmoud M. Nizam El Din Signature
- 4- Dr. Rasha Abd El Aziz M. Faty Signature

Prof. Dr. Mohamed A. Badawy

Head of Chemistry Department Faculty of Science - Cairo University

List of Abbreviations

Symbol	Scientific Meaning
FTIR	Fourier-Transform Infrared
	Analysis
DSC	Deferential Scanning Calorimetry
TGA	Thermogravimetric Analysis
SEM	Scanning Electron Microscopy
CMC	Carboxymethyl Cellulose
PEG	Poly(Ethylene Glycol)
PEO	Poly(Ethylene Oxide)
PAM	Poly(Acrylamide)
DDS	Drug Delivery System

Contents

CHAPTER I Introduction and Literature reviews

Page **Ionizing Radiation** 1.1. 1.1.1. Interaction of Radiation with Materials 1 1.1.2. Radiation Chemistry of Natural Polymers 2 1.1.3. Radiation Processing and Applications of 4 **Natural and Synthetic Polymers** Polymer blends 1.2. 8 1.2.1. Types of Polymer Blends 9 **Thermoplastic Polymer Blends** 9 1.2.1.1. 9 1.2.1.2. **Thermoplastic Rubber Blends** 1.2.1.3. **Elastomer-Elastomer Blends** 10 1.2.1.4. Natural Polymer Blends 11 1.2.1.5. Natural/Synthetic Polymer Blends 14 17 1.2.2. **Miscibility of Polymer Blend** 1.2.3. **Compatibilization of Polymer Blends** 24 **Applications of Natural and Synthetic** 1.2.4. **30 Polymer Blends** 1.2.4.1. Removal of Toxic Metals from 30 Water **Removal of Dyes from Wastewater** 1.2.4.2. **37** 1.3. **Drug Delivery** 40 1.3.1. Mechanism of Controlled Drug Delivery 41 1.3.1.1. Diffusion Controlled Release 41 1.3.1.2. Swelling-diffusion Controlled Release 42 43 1.3.1.3. Drug Release through Biodegradation

CHAPTER II EXPERIMENTAL MATERIALS, METHODS AND MEASUREMENTS

2.1.	Materials	52
	2.1.1. Homopolymers	52
	2.1.2. Chemical Reagents and Drugs	52
2.2	Technical Procedure	53

	2.2.1. Preparation of Carboxymethyl Cellulose/poly(ethylene	53
	Glycol) Blends (CMC/PEG)	
	2.2.2. Preparation of Carboxymethyl Cellulose/poly(ethylene	53
	Oxide) Blends (CMC/PEO)	
	2.2.3. Preparation of Polyacrylamide/Sodium Alginate	54
	Blends (PAM/AG)	
	2.2.4. Preparation of Blend Hydrogels	54
	2.2.5. Preparation of Drug Loaded Blends	54
	2.2. 6. Preparation of Ketoprofen Loaded Blends	54
	2.2.7. Gamma Irradiation	55
2.3.	Measurements and Analysis	55
	2.3.1. IR Spectroscopic Analysis	55
	2.3.2. Ultraviolet (UV) Measurements	55
	2.3.3. Thermogravimetric Analysis (TGA)	55
	2.3.4. Differential Scanning Calorimetry (DSC)	56
	2.3.5. Scanning Electron Microscopy	56
	2.3.6. Tensile Mechanical Measurements	56
	2.3.7. Swelling Measurements	57
	2.2.8. Dye Adsorption Measurements	58
	2.2.9. Metal Uptake Measurement	58
	2.3.10. Drug Release Measurements	59

CHAPTER III RESULTS AND DISCUSSION

3.1.	Effect	of Gamn	na Irradiation on the Physical and	
	Chem	ical Prop	erties of Carboxymethyl Cellulose	
	(CI	MC)/ Poly	v(ethylene glycol) (PEG) Blends	
	3.1.1.	Characte	rization	60
		3.1.1.1.	IR spectroscopic analysis	61
		3.1.1.2.	Thermogravimetric analysis (TGA)	66
		3.1.1.3.	Differential scanning calorimetry	72
			(DSC)	
		3.1.1.4.	Tensile mechanical properties	76
		3.1.1.5.	Scanning electron microscopy (SEM)	83
	3.1.2.	Water Up	otake	85
	3.1.2.1.	Swelling a	and Diffusion Studies	89
	3.1.3.	Dye Upta	ke	91

	3.1.4.	Metal Son	rption	97
	3.1.5.	Adsorption	on and Controlled release Properties of	103
		Chlortetr	acycline HCL Drug	
		3.1.5.1.	Adsorption of Chlortetracycline HCl	104
		3.1.5.2.	Release of Chlortetracycline HCl	105
	3.1.5.	Adsorption	on and Controlled Release Properties of	109
		Caffeine l	Drug	
		3.1.5.1.	Adsorption of Caffeine	110
		3.1.5.2.	Release of Caffeine	112
	3.1.6.	Conclusio	on	116
3.2.	Effect of	of Gamma	a Irradiation on the Physical and	
	Chemic	cal Proper	ties of Carboxymethyl Cellulose	
	(CMC)	/ Polv(eth	ylene oxide) Blends	
	3.2.1.	Characte	•	117
		3.2.1.1.	IR spectroscopic analysis	117
		3.2.1.2.	Differential scanning calorimetry(DSC)	120
		3.2.1.3.	Thermogravimetric analysis (TGA)	124
		3.2.1.4.	Tensile mechanical properties	131
		3.2.1.5.	Scanning Electron Microscopy	133
	3.2.2.	Water Up	otake	134
	3.2.2.1.	Swelling a	and Diffusion Studies	138
	3.2.3.	Ketoprof	enDrug Uptake-Release Properties	140
	3.2.4.	Conclusio	on	144
3.3.	Effect of	of Gamma	a Irradiation on the Physical and	
	Chemic	al Proper	ties of Polyacrylamide/Sodium	
	Alginat	e Blends	•	
	3.3.1.	Characte	rization	147
		3.3.1.1.	IR spectroscopic analysis	147
		3.3.1.2.	Differential scanning calorimetry	151
			(DSC)	
		3.3.1.3.	Thermogravimetric analysis (TGA)	157
		3.3.1.4.	Tensile Mechanical Properties	162
	3.3.2.	Swelling 1	Properties of PAM/AG Blends	165
	3.3.2.1.	Swelling a	and Diffusion Studies	168
	3.3.3.	Drug Upt Blends	ake-Release Properties of PAM/AG	170
		Dichus		

		3.3.3.2.	Release of Chlortetracycline HCl	170
	3.3.4.	3.3.3.3.	Release of Ketoprofen	167
	3.3.5.	Conclusi	on	178
Cor	nclusions			179
Ref	erences			181
Eng	lish Summ	ary		
Ara	bic Summa	ary		

List of Tables

Table 1 List of natural polymers	14
Table 2 Weight loss (%) at different decomposition	71
temperatures of CMC and PEG and their blends at	
different ratios before and after gamma irradiation to	
various doses	
Table 3 Temperature of the maximum rate of reaction for	71
pure CMC, PEG and their blends at different	
Table 4 compositions before and after gamma irradiation Table 4 DSC kinetic parameters of CMC and their blends of	76
different ratios before and after gamma irradiation to	/0
various doses	
various doses	
Table 5 Yield properties of CMC and PEG homopolymers and	82
their blends at different compositions before and after	
gamma irradiation to various doses	
Table 6 Break properties of CMC and PEG homopolymers	82
and their blends at different compositions before and	
after gamma irradiation to various doses	
Table 7 Swelling and Diffusion Parameters of CMC/PEG	
different blends in water at different pH values and 25	91
^⁰ C.	
Table 8	98
Atomic, ionic radii and electronic configuration	
Table 9	124
blends of different ratios before and after gamma	124
irradiation to various doses	
Table 10 Weight loss (%) at different decomposition	130
temperatures of CMC and PEO and their blends	
CMC/PEO at different ratios before and after gamma	
irradiation to various doses	
Table 11 Temperature of the maximum rate of reaction for	130
pure CMC, PEO and their blends at different	
compositions before and after gamma irradiation	
Table 12 Swelling and Diffusion Parameters of CMC/PEO	139
different blends in water at different pH values and 25	13)
°C.	

Table 13	Temperature of the maximum rate of reaction for pure AG, pure PAM and their blends at different compositions before and after gamma irradiation	162
Table 14	Swelling and Diffusion Parameters of PAM/AG different blends in water at different pH values and 25 °C.	168

List of Figures

	Chapter III-Part 1	
Effect of	Gamma Irradiation on the Physical and Che	emical
	es of Carboxymethyl cellulose/ poly(ethylene s	
P	Blends	5-, /
	Dienus	Page
Figure 1	Drug delivery from a typical matrix drug delivery system	42
Figure 2	Drug delivery from (a) reservoir and (b) matrix	43
Figure 3	Drug delivery through polymer degradation (a) Bulk erosion (b) Surface erosion	43
Figure 4	IR spectra of unirradiated pure CMC, PEG polymers and their blends at different composition	63
Figure 5	IR spectra of pure CMC, PEG polymers and their blends at different ratios exposed to a dose of 20 kGy of gamma irradiation	64
Figure 6	IR spectra of pure CMC, PEG polymers and their blends at different ratios exposed to a dose of 40 kGy of gamma irradiation	65
Figure 7	IR spectra of pure CMC, PEG polymers and their blends at different ratios exposed to a dose of 100 kGy of gamma irradiation	66
Figure 8	TGA thermograms and rate of reaction of unirradiated CMC, PEG polymers and their blends of different ratios	69
Figure 9	TGA thermograms and rate of reaction curves of CMC, PEG polymers and their blends of different ratios gamma irradiated to different	70

	doses	
Figure 10	DCS thermograms of unirradiated pure CMC, PEG polymers and their blends of different ratios	73
Figure 11	DSC thermograms of CMC/ PEG blends of different ratios exposed to a dose of 20 kGy of gamma radiation	74
Figure 12	DSC thermograms of CMC/ PEG blends of different ratios exposed to a dose of 40 kGy of gamma radiation	75
Figure 13	Yield stress and strain of CMC/PEG blends of different ratios exposed to different doses of gamma radiation	80
Figure 14	Break stress and strain of CMC/PEG blends of different ratios exposed to different doses of gamma radiation	81
Figure 15	SEM micrographs of unirradiated pure CMC and CMC/PEG (50/50%) blends before and after gamma irradiation to a dose of 20 kGy	84
Figure 16	Water uptake at different pH values by CMC/PEG (80/20%) blends exposed to a dose of 20 kGy of gamma radiation	87
Figure 17	Water uptake at different pH values of CMC/PEG (50/50%) blends exposed to a dose of 20 kGy of gamma radiation	87
Figure 18	Water uptake as a function of time at different temperatures by CMC/PEG (50/50%) blends exposed to a dose of 20 kGy of gamma irradiation	88
Figure 19	Water uptake as a function of time at different temperatures by CMC/PEG (80/20%) blends exposed to a dose of 20 kGy of gamma irradiation	88
Figure 20	Linear fit line <i>lnF</i> versus <i>lnt</i> at different pH values for 50/50 CMC/PEG blend hydrogel in water at 25 ⁰ C and dose: 20 kGy	90
Figure 21	Linear fit line <i>lnF</i> versus <i>lnt</i> at different pH values for 80/20 CMC/PEG blend hydrogel in water at 25 ⁰ C and dose: 20 kGy	90
Figure 22	Effect of pH on the dye uptake of different dyestuffs by CMC/PEG (50/50%) blends from initial dye concentration of 100 ppm	94

Figure 23 Effect of pH on the dye uptake of different dyestuffs by CMC/PEG (60/40%) blends from initial dye concentration of 100 ppm Figure 24 Effect of pH on the dye uptake of different dyestuffs by CMC/PEG (80/20%) blends from initial dye concentration of 100 ppm Figure 25 Dye uptake at pH 5 of different dyestuffs by different ratios of CMC/PEG blends from initial dye concentration of 100 ppm Figure 26 Dye uptake at pH 5 of different dyestuffs by different ratios of CMC/PEG blends from initial dye concentration of 100 ppm Figure 27 Dye uptake at pH 7 of different dyestuffs by different ratios of CMC/PEG blends from initial
Figure 24 Effect of pH on the dye uptake of different dyestuffs by CMC/PEG (80/20%) blends from initial dye concentration of 100 ppm Figure 25 Dye uptake at pH 5 of different dyestuffs by different ratios of CMC/PEG blends from initial dye concentration of 100 ppm Figure 26 Dye uptake at pH 5 of different dyestuffs by different ratios of CMC/PEG blends from initial dye concentration of 100 ppm Figure 27 Dye uptake at pH 7 of different dyestuffs by 97
Figure 24 Effect of pH on the dye uptake of different dyestuffs by CMC/PEG (80/20%) blends from initial dye concentration of 100 ppm Figure 25 Dye uptake at pH 5 of different dyestuffs by different ratios of CMC/PEG blends from initial dye concentration of 100 ppm Figure 26 Dye uptake at pH 5 of different dyestuffs by different ratios of CMC/PEG blends from initial dye concentration of 100 ppm Figure 27 Dye uptake at pH 7 of different dyestuffs by 97
dyestuffs by CMC/PEG (80/20%) blends from initial dye concentration of 100 ppm Figure 25 Dye uptake at pH 5 of different dyestuffs by different ratios of CMC/PEG blends from initial dye concentration of 100 ppm Figure 26 Dye uptake at pH 5 of different dyestuffs by different ratios of CMC/PEG blends from initial dye concentration of 100 ppm Figure 27 Dye uptake at pH 7 of different dyestuffs by 97
Figure 25 Dye uptake at pH 5 of different dyestuffs by different ratios of CMC/PEG blends from initial dye concentration of 100 ppm Figure 26 Dye uptake at pH 5 of different dyestuffs by different ratios of CMC/PEG blends from initial dye concentration of 100 ppm Figure 27 Dye uptake at pH 7 of different dyestuffs by 97
Figure 25 Dye uptake at pH 5 of different dyestuffs by different ratios of CMC/PEG blends from initial dye concentration of 100 ppm Figure 26 Dye uptake at pH 5 of different dyestuffs by different ratios of CMC/PEG blends from initial dye concentration of 100 ppm Figure 27 Dye uptake at pH 7 of different dyestuffs by 97
different ratios of CMC/PEG blends from initial dye concentration of 100 ppm Figure 26 Dye uptake at pH 5 of different dyestuffs by different ratios of CMC/PEG blends from initial dye concentration of 100 ppm Figure 27 Dye uptake at pH 7 of different dyestuffs by 97
dye concentration of 100 ppm Figure 26 Dye uptake at pH 5 of different dyestuffs by different ratios of CMC/PEG blends from initial dye concentration of 100 ppm Figure 27 Dye uptake at pH 7 of different dyestuffs by 97
Figure 26 Dye uptake at pH 5 of different dyestuffs by different ratios of CMC/PEG blends from initial dye concentration of 100 ppm Figure 27 Dye uptake at pH 7 of different dyestuffs by 97
different ratios of CMC/PEG blends from initial dye concentration of 100 ppm Figure 27 Dye uptake at pH 7 of different dyestuffs by 97
dye concentration of 100 ppm Figure 27 Dye uptake at pH 7 of different dyestuffs by 97
Figure 27 Dye uptake at pH 7 of different dyestuffs by 97
different ratios of CMC/PEG blends from initial
dye concentration of 100 ppm
Figure 28 Effect of initial concentration on the metal ion 99
uptake for (50/50) CMC/PEG
Figure 29 Effect of initial concentration on the metal ion 99
uptake for (60/40) CMC/PEG
Figure 30 Effect of initial concentration on the metal ion 100
uptake for (80/20) CMC/PEG
Figure 31 Effect of (CMC/PEG) blend compositions on the 100
metal ion uptake (mg/g) for different metal ions,
initial conc. 100 ppm
Figure 32 Effect of pH on the metal ion uptake for (50/50) 102
CMC/PEG
Figure 33 Effect of pH on the metal ion uptake for (60/40)
CMC/PEG
Figure 34 Effect of pH on the metal ion uptake for (80/20) 103
CMC/PEG
Figure 35 uptake of different concentrations of 104
Chlortetracycline by different ratios of
CMC/PEG blends
Figure 36 Uptake of different concentrations of 109
Chlortetracycline by different ratios of
CMC/PEG blends
Figure 37 Release profile of different concentrations of 100
Chlortetracycline at pH 2 by different ratios of
CMC/PEG blends
Figure 38 Release profile of different concentrations of 100
Chlortetracycline at pH 5 by different ratios of
CMC/PEG blends
Figure 39 Release profile at concentrations (0.5 mg/ml) of 10'