. USING CLEAN TECHNOLOGY FOR RECYCLING USED LUBRICATING OILS

Submitted By Ahmed Hussein El-Sayed

B.Sc. of (Power Mechanics), Faculty of Engineering & Zagazig University, 1980
 Master of Environmental Science, Institute of Environmental Studies & Research
 Ain Shams University, 1988

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Science

Department of Environmental Engineering Science Institute of Environmental Studies and Research Ain Shams University

2013

APPROVAL SHEET

USING CLEAN TECHNOLOGY FOR RECYCLING USED LUBRICATING OILS

Submitted By

Ahmed Hussein El-Sayed

B.Sc. of (Mechanical Power Engineering), Faculty of Engineering,

Zagazig University, 1980

Master of Environmental Science, Institute of Environmental Studies & Research

Ain Shams University, 1988

This thesis Towards a Doctor of Philosophy Degree in Environmental Science Has been Approved by:

Name Signature

1- Prof. Dr. Mohamed Aly Halawa

Prof. in Department of Mechanical Power Engineering Faculty of Engineering Al Azhar University

2- Prof. Dr. Mohamed Youssef El Kady

Prof. of Organic Chemistry Faculty of Science Ain Shams University

3- Prof. Dr. Mohamed A. El-Samanoudy

Prof. in Department of Mechanical Power Engineering Faculty of Engineering Ain Shams University

4- Prof. Dr. Mohamed Gharib El Malky

Prof. of Geophysics, Department of Environmental Basic Science Institute of Environemntal Studies & Research Ain Shams University

2013

USING CLEAN TECHNOLOGY FOR RECYCLING USED LUBRICATING OILS

Submitted By

Ahmed Hussein El-Sayed

B.Sc. of (Power Mechanics), Faculty of Engineering & Zagazig University, 1980Master of Environmental Science, Institute of Environmental Studies & ResearchAin Shams University, 1988

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Science

Department of Environmental Engineering Science

Under The Supervision of:

1- Prof. Dr. Mohamed A. El-Samanoudy

Prof. in Department of Mechanical Power Engineering Faculty of Engineering Ain Shams University

2- Prof. Dr. Mostafa Mohamed Soliman

Prof. in Department of Irrigation & Hydraulic Engineering Faculty of Engineering Ain Shams University

3- Prof. Dr. Mohamed Gharib El Malky

Prof. of Geophysics, Department of Environmental Basic Science Institute of Environemntal Studies & Research Ain Shams University

4- Dr. Mahmoud Mohamed Kamal Abd El-Aziz

Lecturer in Department of Mechanical Power Engineering Faculty of Engineering Ain Shams University

2013

Acknowledgement

Sincere thanks and appreciation are expressed to **Prof. Dr. Mohamed A. El Samanody,** Professor of Mechanical Department, Faculty of Engineering, Ain Shams University, for his kind interest and guidance during the course of the work and suggesting the present line of work, constructive suggestions, discussion and criticism.

The author wishes to express his sincere appreciate to Prof. Dr. Mostafa M. Soliman, Professor of Irrigation and Hydraulic Department, Faculty of Engineering, Ain Shams University, for helpful guidance and encouragement the author to do his work.

The author also wishes to **Prof. Dr. Mohamed Gharib El-Malky**, Professor of Institute of Environmental Studies and Research. Ain Shams University, for his kind help and encouragement.

The author also wishes to Dr. Mohmoud M. Kamal Abdel Aziz Associate Prof. of Engineering, Ain Shams University for the continues support, guidance and review of the work.

Special thanks are due to the technical staff of Research Centre and production a manufacturing sector in Alexandria. Misr Petroleum Co. and Research of Construction Institute for their sincere helpful cooperation.

ABSTRACT

Analytical, thermal and performance data were derived from the analysis of 14 commercial multi and mono grade lube oils by using routine, non-routine and performance tests. When the tested oils were used in engines, they deteriorated and became less efficient and a change in their properties occurred. Such that the oils couldn't give a complete performance. The objective was to evaluate the efficiency of tested oils and estimate their deterioration using these oils in standard and recent instruments and laboratory performance engine test machines.

The 20 used oil samples obtained from 10 service stations and different industrial companies in great Cairo were analyzed in order to investigate the variation in waste oils. The waste oils are used as feedstock to activate new improved rerefining and reclaiming processes. The Waste oil management is necessary for minimizing the negative impacts of the waste oil on the environment and human health, by reusing reuse this hazardous waste with the oil of the most appropriate technologies to contribute to the national economy. In this respect, the key groups are the waste oil management system; oil producers, waste oil generators, waste oil transports, recovery and disposal facilities. Moreover, at each step of waste oil management it is important to take the necessary measures to ensure that waste management is carried out without endangering the human health or the environment.

Used oil management in Egypt is an important to clean product that has not yet received sufficient attention although recycling has been practiced for a long time. Mismanagement of waste oil thus represents not only a serious environmental hazard but also a waste of precious petroleum resources. This research work deals with a new improved method for the recycling the used lube oil by mechanical separation, dehydration, vacuum distillation and fractionation for restoring into the condition in which it has substantially the same lubricating characteristics as in its original form. Laboratory tests were selected and in some instances modified to determine the analytical, thermal and performance properties of the recycled oil. This was also performed for the additionally samples of commercially new oil and recycled oil were and comparative studies were determined. Selected samples of recycled oil were reformulated with an additive for further estimates of quality.

This proposed technology which consists of mechanical separation and distillation (atmospheric and vacuum) is environmentally sound technology. It is also

a potential for significantly improved environmentally performance relative to other technologies Energy conservation and environmental considerations would be better served by re- refining rather than burning the used oil. If every liter of used oil is re – refined rather than burned it will save 139000 BTU. Re-refining the used oil only takes one third of the energy required to re – refine the crude oil. The recovery of waste oils is of economic importance. This is because the balance of payment is reduced through saving the expensive lube oil. The cost saving arise for industry and consumers, extends the life and usefulness of natural resources and contributes to a more sustainable life style. Modern re-refining processes return the used oil to a new condition by removing dirt and contaminants before injecting the lube additives to protect engines.

The environmental benefits clearly favor recycling because the toxic heavy metals (Zinc, cadmium, chromium, and lead, among others) are extracted from the used oil, rather than getting emitted into the atmosphere during combustion. The research assesses and compares the environmental impacts and benefits of each management method in the product end – of – life scenario using a life – cycle assessment approach (LCA). A life – cycle inventory showed that 820 mg of zinc and 28 mg of lead air emissions may result from the combustion of 1 L of used oil as a fuel (50-100 times that of crude – derived fuel oils). For an example, up to 136 Mg of zinc and 5 mg of lead air emissions may be generated from combustion.

This research work contains the comparative studies of process energy requirements, yield and waste disposal. The comparison is held between the new improved process and the international recycling processes in the final part. Superior options for managing used oil, such as used oil re-refining, are readily available throughout most of Egypt. Re-refining the used oil into new lubricating oil allows the oil to be used over and over again. The used motor oil is a renewable resource. The lube oil never wears out: but it only gets dirty. Instead it can be re-refined into new lubricating oil in an endue recycled loop which saves energy and reduces greenhouse gas emissions (GHG).

Re-refining of base oils from used lubricants is attracting much of interest in Egypt .Re-refining provides a new life for the used oil, which allows continues utilization of the lubricant resource, and it has a small environment footprint compared to other methods of managing used oil. As the re-refining capacity increases, competition for used oil will increase as well and some consumers continue

to perceive re-refined oil as lower quality and lower performing. The synergistic effect of these two phenomena has created an environment in which the recycle of used lubricating oil is once again a socially desirable and economically profitable enterprise. This conserves our non-renewable petroleum resources, reduces greenhouse gas emissions and saves energy when compared to burning the used oil as fuel without treatment before burning.

The proposed technology converts used lubricant oil into 88% base lubricant and 4% fuel, 2% water and 6% heavy ends making it zero% emission from proposed process therefore, it's the solution for a green economy and lube-re-refining as the best option to save a precious raw material. By products obtained from the proposed process as fuel, heavy ends, and water can be less than other recycle process and can be sold in their own right, thereby limiting waste from the process. The proposed technology for recycling used lube oil is environmentally friendly and closed loop system. It also has a positive implications for green house challenge as well as environmental benefits such as air toxics conservation of resources and lower carcinogenic risks from re-refined oils which meet all new motor lubricating specifications.

The results showed that continuous distillation column has improved results, and suggested that a mechanical separation (such as settling, centrifuging filtration and coalescing step) is important to reduce the processing difficulties. Coking and fouling in the subsequent fractional distillation. Doubled distillation vacuum reduces the contaminants to low level of 60% ash, such that no further operational problems were encountered on vacuum distillation. The optimal conditions of pressure and temperature were 4 mBar and 200°C during dehydration that as the best result than virgin oil. Recycling the used oil is the most preferable option over burn. Vacuum distillation of used lube oil at 4 mBar and temperature 370°C give better result than virgin oil. Re-processing used oil saves significant energy. Just 1 liter of used oil yield the same volume of lube base oil obtains from 42 liters of traditionally refined crude oil, (while only using about one third of the energy). The metal content of used oil was greatly reduced where Fe decreased from 712 to 17 ppm and Zn decreased from 2282 to 20 ppm using dehydration and double vacuum distillation processes.

The environmental impact of re-refining is a substantial improvement over burning with respect to human toxicity potential, heavy metals hazards, eutrophication potential, aquatic ecotoxicity, carcinogenic substances, photochemical oxidant potential and acidification potential. The preservation of energy as an environmental consideration favors re-refining or combustion in larger industrial applications. The energy balance favors re-refining because the energy consumption that occurs during the distillation and mechanical separation in the proposed process is less than that consumed in burning the used oil as a fuel or in space heaters. The burning of used oil in space heaters is considered to be a less than state-of-the-art management option for used oil.

Table of Contents

	Page
Acknowledgement	IV
Abstract	V
List of Tables	XVI
List of Figures	XXIII
List of symbol and Abbreviation	XXXVI
1 Introduction	1
2 Literature survey	14
2-1 Introduction	14
2-2 Problem statement	17
2-3 General	20
2-4 Lubricant & energy efficiency : life cycle analysis	22
2-5 New lubricating, used and recycled oils analysis	38
2-6 Re-refining methods of used lube oil	41
2-7 life cycle analysis of its health and environment impact	47
2-8 Objection of the present work	64
3 Lube oil tests experimental and process set-up	69
3-1 General	69
3-2 Lube oil Tests Experimental set up	69
3-2-1 Introduction	69
3-2-2 Field testing (fiat 132)	71
3-2-3 Bench Engine test (Nasr 1500)	72
3-3 Used oil recycling process set up	81
3-3-1 Introduction	81
3-3-2 Process features	81
3-3-3 Operation sequence for proposed process	84
3-3-4 Process Description	90
3-4 Burning technique	93
3-4-1 Waste oil Heater	93
3-5 Lube oil Tests Experimental set up experimental	97
measurements	
3-5-1 Temperature	97
3-5-2 Engine speed	97
3-5-3 Air flow measurement	97
3-5-4 Fuel flow measurement	98
3-5-5 Pressure	98
3-5-6 Power measurement	99

3-5-7 Dew point measurement	100
3-5-8 Moisture measurement	101
3-6 Test oils	101
4 Recycling and burning of used lube oil Technologies assessment	104
4-1 Introduction	104
4-2 Technology Assessment	105
4-2-1 Technology Assessment Tools	105
4-3 Environmentally sound technologies performance	108
4-3-1 Environmental performance indicators	108
4-3-2 Life cycle Assessment	109
4-3-2-1 Life cycle concept	110
4-3-2-1 Life cycle consideration	112
4-3-3 The Environmental Drivers	112
4-3-3-1 Sustainability	113
4-3-3-2 sustainable Development	116
4-3-3-3 sustainability principles	117
4-4 Sustainability: A lubricant Life Cycle Approach	119
4-4-1 technology Development cycle	120
4-4-2 used oil management	121
4-4-2-1 Collection and sorting	125
4-4-2-2 Disposal	125
4-4-2-3 Used / Waste oil generation	127
4-4-2-4 Generators	1239
4-4-2-5 Collectors / Transporters	130
4-4-2-6 used oil processors	131
4-4-2-7 used oil Burners	132
4-4-2-8 Eco friendly characters tic of used lube Oil proposed process	134
4-4-3 life cycle management	137
4-4-3-1 proposed processes Elements	140
4-4-3-2 Selection of Appropriate Technology	143
4-4-3-3 Environ. Solutions	144
4-4-3-4 Proposed Process as a Green Technology	145
4-4-3-5 Green process	146
4-5 Clean technology	146
4-5-1 The Concept of Clean Technology	149
4-5-2 Industrial Ecology of the life cycle Design	154
4-5-3 Life Cycle Thinking LCT	158
4-5-4 life cycle Design of lubricant	161

4-5-5 cleaner production tools	162
4-5-6 Eco – efficiency and Industrial Ecology	165
4-5-6-1 Cleaner production pollution prevention	166
4-5-6-2 cleaner production	167
4-5-6-3 clean production criteria	171
4-5-7 Clean tech vs. Green tech	172
4-5-7-1 clean tech	173
4-5-7-2 Green Technology	173
4-5-7-3 The Green of motor oil	175
4-6 A systematic approach for Recycling and Burning used oil	176
4-6-1 technology assessment	177
4-6-2 MFA, LCA and LCC	178
4-6-3 Life cycle Assessment	180
4-6-4 life cycle costing	181
4-7 Material and Energy Balance	184
4-7-1 Basic principles	185
4-7-2 Energy Balances	185
4-7-3 Heat Balances	186
4-7-4 Other Forms of Energy	186
4-7-5 Method For Preparing Process	187
4-7-6 Material Balances	190
5 Proposed technologies for recycling and burning used lube oil	192
5-1 Used oil re-refining process	192
5-1-1 Mechanical separation	193
5-1-2 Dehydration of used oil	200
5-1-3 Vacuum Distillation	201
5-2 Experimental Apparatus	203
5-2-1 The sieve plate column	203
5-2-2 The distillation apparatus	204
5-2-3 The vacuum unit	205
5-2-4 Experimental procedures	209
5-2-4-1 Dehydration	209
5-2-4-2 Vacuum distillation	210
5-2-5 The re-refining process experimental results	210
5-2-5-1 Dehydration	210
5-2-5-2 Vacuum distillation	218
5-2-6 Comparison of the properties of used oil virgin oil	233
and treatment oil distillates.	

5-2-7 Comparison between used oil, virgin oil and rerefined oil.	235
5-3 Burning used oil	246
5-3-1 Energy recovery	247
5-3-2 Waste oils as a fuel by controlling parameters	241
5-3-3 Current used oil disposal options	250
5-3-4 Waste Mineral oil recovery methods	251
5-3-4-1 Waste to Energy At a glance	252
5-3-4-2 Waste to energy as renewable energy	252
source	232
5-4 Comprising of air pollutant Emission form vaporizing air atomizing waste oil heaters	255
5-4-1 Test measurement	256
5-4-2 Results and Discussion	258
5-4-3 Comparison with threshold limit values	264
5-5 Comparative emissions model between used oil heater, furnace with clean fuel (natural gas)	265
5-5-1 Characterization of untreated waste oils as a fuel	269
5-5-2 Technical feasibility of untreated waste oil as a fuel	270
5-5-3 Environmental impacts of untreated waste oil fuel combustion	271
5-5-4 Waste oil combustion impact reduction alternatives	273
5-6 In-situ burning of used oil and its effects on health and safety	278
5-6-1 Burning technique.	278
5-6-2 Burning vs. Evaporation	282
5-7 Cleaning technology procedures for burning waste oil as a boiler fuel	283
5-7-1 Clean technology for waste oil burner	293
6- Results and Discussion	300
6-1 Analytical properties evaluation	300
6-1-1 Introduction	300
6-1-2 Multi, Monograde and formulated oil samples	301
6-1-2-1 Physical and thermal properties	301
6-1-2-2 Chemical properties	305
6-1-3 Chemical structure analysis of tested samples	309
6-1-4 Re-refined Base oils characteristic	311
6-1-5 Chemical structure analysis of re-refined base oil samples	315
6-1-6 Selection of re-refined base oil (R ₁)	317
6-2 Used oil analysis	327

6-2-1 Introduction	327
6-2-2 Used Engine oils	328
6-2-3 Testing and Interpretation of multi and monograde	340
oil samples results	
6-2-4 Basic factors in oil deterioration	344
6-3 Engine Tests	352
6-3-1 Bench tests on engines	352
6-3-1-1 Bench engine test (Nasr 1500)	354
6-3-1-2 Field testing (Fiat 132)	374
6-4 Institutional Impact on re-refining	399
6-4-1 Combustion of used oil	399
6-4-2 Alternative to burning or re-refining and burning	399
6-4-3 Resources conservation	400
6-4-4 Process energy requirements	400
6-4-5 Virgin lube oil production	404
6-4-6 Economics of crankcase used lube oil re-refining	405
6-4-7 Assessment of used oil utilization	407
6-5 Energy conservation and petroleum Displacement	433
6-5-1 Re-refined lube oil	434
6-5-2 Energy conservation comparison of reprocessing	435
versus re-refining	
6-5-3 Burning used oil as fuel	436
6-5-4 Re-refining used oil	437
6-5-5 Energy Conservation Consideration	438
6-5-6 Reprocessing used oil as fuel	439
6-5-7 Re-refining used oil us lube oil	439
6-5-8 Comparison of reprocessing and re-refining	440
6-6 Burning or re-refining used lube oils	442
6-6-1 collection and disposal element from used lube oils	442
6-6-2 Burning options	442
6-6-3 Regeneration options	445
6-6-4 Refinery recycling	444
6-6-5 Health effects	445
6-6-6 lifecycle assessment of the environmental impact	446
6-6-7 LCA: definitions and conditions	447
6-6-8 conditions and assumptions	453
6-6-9 results from the life cycle assessment	456
6-6-10 discussion and conclusions	460
6-6-11 quantitative life cycle assessment of products	464
6-6-12 results from life cycle assessment (DATA)	465

6-6-13 Review of the most important environmental impacts	466
6-7 The review of the LCA studies related to waste oil recovery options	473
6-7-1 Results Of The LCA studies	475
6-7-1-1 regeneration vs. energy recovery	482
6-7-1-1 fuel and feedstock conversion vs. energy recovery	475
6-8 Energy and environmental Impacts of re-refining used oil processes	482
6-8-1 Energy Impacts	483
6-8-2 System Analysis	483
6-8-3 environmental Impacts	485
6-9 LCA and environmental Impact for recovery routes	488
6-9-1 LCA methodology	488
6-9-2 Main results	491
6-9-3 sensivity analysis	443
6-10 life cycle analysis of pent lube oil re-refining proposed process	495
6-10-1 life cycle assessment methods	496
6-10-2 results and discussion	499
6-10-3 comments on sustainability	503
6-10-4 Advantages of Re-refining used oil	503
6-11 life cycle assessment of proposed process	511
6-12 Environmental assessment of used oil management methods	530
6-12-1 used oil fuel combustion with energy recovery	531
6-12-2 methodology	533
6-12-3 Discussion of Results	538
6-13 life cycle assessment of the environmental Impact of burning or re-refining used- lube oil	543
6-13-1 system boundaries and comparability of burning and regeneration systems.	544
6-13-2 technological represent activeness and sources of data	545
6-13-3 Environmental Impact categories	545
6-13-4 Examination for precedence in Accordance with the waste recycling	547
6-13-5 Main Results	551
6-13-6 Impact Assessment of used oils recycling and burning.	553

6-14 The impact of Waste Oils Management	562
6-14-1 Environmental Impact	562
6-14-2 Economic Impact – direct costs	570
6-14-3 social Impact	573
6-15 Selection and evaluation of recycling used lube oil technologies	574
6-15-1 Introduction	574
6-15-2 Discussion on regeneration technology of waste oil	580
6-15-3 Comparison of different regeneration technologies	581
6-15-4 Evaluation method and briefing analytic hierarchy process (AHP)	592
6-15-5 Analytic hierarchy process results	597
7- Conclusions and Recommended future work	606
7-1 Conclusions	606
7-2 Future, Trends	621
8- Summary	624
9- References	658
10- Appendices	971
Arabic summary	