A Comparative Study between the Use of Endoscopic Assisted Versus Other Methods in Repair of Subcondylar Fracture Mandible

Thesis

Submitted for Partial Fulfillment of MD Degree in Plastic Surgery

Presented By

Sarah Abd-alazeem Abd-almaksoud Farrag

M.B.B.Ch., M.S. in General Surgery
Ain Shams University

Under the Supervision of Professor/ Ikram Ibrahim Safe

Professor of Plastic & Reconstructive Surgery Faculty of Medicine, Ain Shams University

Professor/ Karim Samir Massoud

Professor of Plastic & Reconstructive Surgery Faculty of Medicine, Ain Shams University

Assistant Professor/Amir Samir Elbarbary

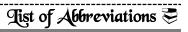
Assistant Professor of Plastic & Reconstructive Surgery Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2013

Acknowledgments

First and last, I thank "Almighty Allah" as I owe HIM mercy, support and guidance throughout my life.

I would like to express my deepest appreciation to **Prof. Dr. Ikram Safe**, Professor of Plastic and Reconstructive Surgery, Ain Shams University, for giving me the honor of working under his supervision and providing me a lot of encouragement throughout this work.


I wish to express my everlasting debt for the effort and help provided by **Prof. Dr. Karim Masood,** Professor of Plastic and Reconstructive Surgery, Faculty of Medicine, Ain Shams University, who saved no time or effort helping me with this work.

My deepest appreciation and grateful thanks are for **Dr. Amir Elbarbary**, Assistant Professor of Plastic and Reconstructive Surgery, Faculty of Medicine, Ain Shams University, who saved no time or effort helping me with this work.

Last but not least, I would like to record thanks to my family, friends, and all those who have helped and encouraged me in the production of this work.

List of Contents

Subject	Page
List of Abbreviations	I
List of Tables	II
List of Figures	VI
Introduction	1
Aim of the Work	4
Review of Literature	
Chapter (1): Endoscopy: History, Equipment,	5
Instrumentation, Setup, and Troubleshooting	
Chapter (2): Anatomy of the Tempromandibular	22
Region	
Chapter (3): Diagnosis and Decision Making in	56
Subcondylar Fractures of the Mandible	
Chapter (4): Surgical approaches to the	
Tempromandibular Region	74
Chapter (5): Surgical Technique of EAORIF of	96
Subcondylar Fractures of the Mandible	
Patients and Methods	115
Results	126
Discussion	142
Summary and Conclusion	152
References	155
Arabic Summary	١

List of Abbreviations

Abb.	Meaning
ATLS	Advanced Trauma Life Support
EAORIF	Endoscopic Assisted Open Reduction and
	Internal Fixation
MIP	Maximal Intercuspal Position
MMF	Maxillomandibular Fixation
ORIF	Open Reduction and Internal Fixation
RM	Retromandiblar
SMAS	Superficial Musculoaponeurotic System
TMJ	Tempromandibular Joint
VCR	Videocassette Recorder

List of Tables

Table No.	Title	Page
Table (2-1)	Summarizing the location, principal morphological and behavioural characteristics of the four varieties of articular receptor nerve ending	44
Table (3-1)	Physical Examination Findings	60
Table (3-2)	The Lindahl System of Clas¬sification	64
Table (3-3)	and Kent's Metamorphosis of the Indications for Open Reduction	67
Table (3-4)	Contraindications for Endoscopic Reduction and Rigid Fixation of Mandibular Condyle Fractures	73
Table (7-1)	Comparison between both studied groups as regard age and gender showing no statistically significant difference between the both studied groups	126
Table (7-2)	Distribution of the studied cases in regard to type of trauma showing no statistically significant difference between both groups using chi-square test	127
Table (7-3)	Comparison between both studied groups as regards the site of the fracture showing no statistically significant difference between both studied groups using chi-square test	128

Table No.	Title	Page
Table (7-4)	Comparison between both studied groups in regard to range of mouth opening showing no statistically significant difference between both studied groups using unpaired t-test	129
Table (7-5)	Comparison between both studied groups regarding preoperative clinical findings showing no statistically significant difference between both studied groups using chi-square test	130
Table (7-6)	Comparison between both groups as regard radiological findings showing no statistically significant difference between both group by using chi-square test	130
Table (7-7)	Comparison between preoperative versus postoperative regarding range of mouth opening among both groups showing statistically significant difference using paired t-test. The percent of change was higher in group I	131
Table (7-5)	Comparison between preoperative versus immediate postoperative symptoms among group I showing statistically significant occlusal improvement using chi-square test. Pain, clicking, and deviation were not assessed since the mouth was closed in MMF group	132

Table No.	Title	Page
Table (7-9)	Comparison between preoperative versus immediate postoperative symptoms among group II showing statistically significant improvement as regard clicking, occlusion, and deviation using chi-square test. There was no statistically significant difference as regard pain	133
Table (7-10)	Comparison between preoperative versus late postoperative clinical findings among group I showing statistically significant improvement regarding occlusion, and deviation using chi-square test. On the other hand there was no significant difference as regard pain and clicking	135
Table (7-11)	Comparison between preoperative versus late postoperative clinical findings among group II showing statistically significant improvement as regard all parameters using chi-square test	135
Table (7-12)	Changes in preoperative and postoperative radiological findings among both groups showing statistically significant improvement in group II using Mc Nemar's test. on the other hand there is no significant difference in group I	136

Table No.	Title	Page
Table (7-13)	Comparison between both studied groups regarding immediate	137
	postoperative symptoms showing no statistically significant difference between both groups using chi-square test	
Table (7-14)	Comparison between both studied groups as regard late postoperative	140
	findings showing no statistically significant difference between both groups by using chi-square test	
Table (7-15)	Comparison between both groups as regard radiological findings showing statistically significant improvement in	141
	group II as regards immediate and late postoperative panorama, and immediate postoperative CT using chi-square test	

List of Figures

Figure No.	Title	Page
Figure (1-1)	The Hopkins rod endoscope is essentially	7
	a glass rod with interspersed air spaces as	
	opposed to a conventional scope, which	
	is a tube of air with interspersed glass	
	lense	
Figure (1-2)	The basic endoscopic equipment consists	9
	of endoscope, camera, light source, and	
	monitor	
Figure (1-3)	Schematic of the rigid endoscope	10
	showing the optic fibers surrounding the	
	lens chain. As the diameter of the scope	
	gets smaller, the room for the optic fibers	
	decreases so that the amount of light one	
	is able o get into the wound also	
	decreases. As the diameter gets smaller	
	the actual amount of light the lens is able	
	to collect also decreases geometrically	
Figure (1-4)	The essential assemblage is to join the	11
	camera, coupler, endoscope, and light	
	source. Endoscope system consisting of camera (CA). coupler (CO), endoscope	
	(EN), and light source (LS)	
Figure (1-5)	Arrangement of the surgeon, assistant,	15
	and endoscopic video monitor in relation	
	to a fracture	
Figure (2-1)	Devision of the frst branchial arch into	23
	maxillary and mandibular processes.	

Figure No.	Title	Page
Figure (2-2)	Human embryo (29 mm C-R; week 8 of	24
	Development). Frontal section of the	
	posterior joint region	
Figure (2-3)	Schematic drawing of the condylar	25
	cartilage (CC) during week 10 of	
	development	
Figure (2-4)	Schematic drawing of the arrangement in	26
	the posterior joint region of the articular capsule	
Figure (2-5)	The mandible has a horseshoe shape. The	28
	figure shows the lateral and medial	
Figure (2-6)	surfaces of the ramus The mandibular condyle can be divided	29
rigure (2-0)	into the condylar (intracapsular) and	2)
	· ` ` · · · · · · · · · · · · · · · · ·	
T: (2.5)	subcondylar (extracapsular) regions	22
Figure (2-7)	Showing the bony components of the TMJ	32
Figure (2-8)	The posterior group of muscles attached	34
	to the mandible	
Figure (2-9)	The tempromandibular joint and its associated ligaments	37
Figure (2-10)	The temporomandibular joint (TMJ)	40
T' (2.11)	capsule and lateral ligament	40
Figure (2-11)	Sagital section through the temporomandibular joint (TMJ)	40
Figure (2-12)	Branches of the auriculotemporal nerve	42
Figure (2-13)	supply sensory innervation of the TMJ	46
Figure (2-13)	Illustration showing the plan of branches	40
	of internal maxillary artery, and	
	beginning of superficial temporal artery	

Figure No.	Title	Page
Figure (2-14)	Branches of the facial nerve	50
Figure (2-15)	Coronal section of the	53
	temporomandibular joint (TMJ) region	
Figure (2-16)	The buccal fat pad and its extensions	55
Figure (3-1)	Sites of weakness of the mandible	56
Figure (3-2)	Direct or indirect trauma to the TMJ	58
	causing injury to surrounding structures	
Figure (3-3)	Condylar fractures classification	64
Figure (3-4)	CT reconstructions of a patient showing	71
	medial and lateral override	
Figure (4-1)	Subperiosteal dissection of the ramus in	75
	the intraoral approach	
Figure (4-2)	Relationship of the facial artery and vein,	79
	the marginal mandibular branch of the	
	facial nerve	
Figure (4-3)	Incision through the petygomasseteric	81
	sling after retraction of vital structures	
Figure (4-4)	Exposure offered by the submandibular	82
	approach	
Figure (4-5)	Incision marked for the RM approach	85
Figure (4-6)	Exposure offered by the retromandibular	85
	approach: transparotid and retroparotid	
Figure (4-7)	Exposure offered by the rhytidectomy	86
	approach	
Figure (4-8)	Outline for the modified endaural	88
	approach to the condyle	

Figure No.	Title	Page
Figure (4-9)	Exposure offered by the preauricular approach	91
Figure (4-10)	Bicoronal approach	94
Figure (5-1)	Some of the instruments in the prototype	97
	endoscopic subcondylar fracture fixation	
	set	
Figure (5-2)	Endoscopic forehead lift retractor used in	97
	these procedures	
Figure (5-3)	Methods of applying inferior traction to	102
	the ramus	
Figure (5-4)	Placing a wedge in the posterior	103
	occlusion with anterior MMF	
Figure (5-5)	Curved elevator developed for the	105
	retrieval of dislocated condylar fragments	
Figure (5-6)	Endoscopic view of a left subcondylar	107
	fracture near the completion of fixation	
	with 2 plates	
Figure (5-7)	Intraoperative view of angulated drill	107
Figure (5-8)	Introducer designed to hold a zygomatic	108
	plate.	
Figure (5-9)	Threaded fragment manipulator	109
Figure (5-10)	Summarization of EAORIF	110
Figure (5-11)	Three kinds of plates designed for	112
	stabilization of subcondylar fractures	
Figure (6-1)	The blunt dissector passing through the	118
	(≤ 1cm) submandibular incision	

Figure No.	Title	Page
Figure (6-2)	A photograph showing downward	118
	traction applied by the interossious wire	
	that is passing through the angle of the	
	mandible	
Figure (6-3)	A photograph showing the rigid, 4 mm,	119
	30° endoscope	
Figure (6-4)	A photograph showing the monitor, light	119
	source, and camera body (from above	
	downwards).	
Figure (6-5)	A photograph showing the camera head	119
	with its cable	
Figure (6-6)	A photograph showing the light source	120
	cable	
Figure (6-7)	A photograph showing different types of	120
	sheath retractors	
Figure (6-8)	A photograph showing the miniplate	122
	applied to the proximal segment with one	
	screw being applied	
Figure (6-9)	A photograph showing the second drill	122
	hole application to the distal segment	
Figure (6-10)	A photograph showing application of the	122
	remaining screws	
Figure (7-1)	A graph showing increased range of	131
	mouth opening in both groups. The	
	percentage of change is higher in group I	

Figure No.	Title	Page
Figure (7-2)	Showing improvement in occlusion in	132
	group I and group II	
Figure (7-3)	CT scans showing radiological changes	137
	in both groups.	
Figure (7-4)	panoramic radiographs showing	138
	radiological changes in both groups.	
Figure (7-5)	A graph showing the improvement in	141
	radiological findings in group II	