بِسْمِ اللهِ الرَّحْمنِ الرَّحِيمِ

﴿ وَعُلَّمَكُ مَا لَمْ تَكُن تَعْلَمُ

وكَانَ فَضْلُ اللهِ عَلَيْكَ
عظيماً ﴿ عَظِيماً ﴾

صدق الله العظيم النساء .. آية رقم ١١٣ دراسة بعض الوسائل العلاجية لحماية الجهاز العصبى لدي حديثي الولادة الذين قاربوا علي إكتمال العمر الرحمي و مكتملي العمر الرحمي و تعرضوا لنقص الأكسجين وقلة الدموية الموضعية بالمخ

رسالة توطئة للحصول علي درجة الدكتوراة في طب الأطفال

مقرمة من الطبيبة / هبة الله علي محمود شعبان بكالوريوس الطب و الجراحة ماجستير طب الأطفال جامعة عين شمس

تحت إشراف

الأستاذ الدكتور/ محمد سامي الشيمي أستاذ طب الأطفال- جامعة عين شمس الأستاذ الدكتور/ هشام عبد السميع عوض أستاذ طب الأطفال- جامعة عين شمس الأستاذ الدكتورة/ سحر محمد أحمد حسنين أستاذ طب الأطفال- جامعة عين شمس الأطفال- جامعة عين شمس

الأستاذ الدكتورة / صفاء شفيق إمام أستاذ طب الأطفال - جامعة عين شمس

الدكتورة / غادة إبراهيم جاد أستاذ مساعد طب الأطفال - جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١١

Study of some neuroprotective therapies in near term and older neonates with hypoxic ischemic insult

Ehesis

Submitted for the partial fulfillment of MD Degree in Pediatrics

Presented by

Hebat Allah Ali Mahmoud Shabaan M.B.B.Ch., M.Sc.Pediatrics

Under supervision of

Prof. Dr. Mohamed Samy El Shimi

Professor of Pediatrics-Ain Shams University

Prof. Dr. Hesham Abd El Samie AwadProfessor of Pediatrics-Ain Shams University

Prof. Dr. Sahar Mohamed Ahmed Hassanein

Professor of Pediatrics-Ain Shams University

Prof. Dr. Safaa Shafik Imam

Professor of Pediatrics-Ain Shams University

Dr. Ghada Ibrahim Gad

Assistant Professor of Pediatrics-Ain Shams University

Faculty of Medicine Ain Shams University 2011

List of Contents

Acknowledgment	
List of Figures	i
Listof Tables	v
List of Abbreviations	ix
Introduction	1
Aim of the study	6
Review of Literature	
Hypoxic ischemic encephalopathy	7
Hypothermia	91
Erythropoietin as neuroprotective	107
Brain-derived neurotrophic factor	127
Neuron-Specific Enolase	137
Patients and Methods	140
Results	158
Discussion	187
Conclusion and Recommendations	214
Summary	217
References	223
Arabic Summary	

LIST OF FIGURES

Figure No.	Title	Page No.
1	Hypoxic ischemic encephalopathy neuropathological patterns	10
2	Fetal response to asphyxia	17
3	The slippery slope	18
4	Pathophysiology of hypoxic-ischemic brain injury in the developing brain	19
5	Schematic representation of the cell surface glutamate (Glu) receptor	22
6	Flow diagram depicting potential biochemical mechanisms of hypoxic-ischemic cerebral injury	24
7	Mechanisms of brain injury in the term neonate	26
8	Evolution of EEG changes in severe HIE	43
9	Different background patterns recorded on a cerebral function monitor	45
10	An EEG recording of five sequential sleep-wake cycles (SWC) in healthy term neonate	47
11	Moderately abnormal cerebral function monitor (CFM)	47
12	Severely abnormal cerebral function monitor	47
13	An aEEG and original EEG recording of a single seizure (C)	48
14	Cerebral function monitor trace (CFM) disturbed by seizure discharge at beginning of trace.	48
15	Cerebral function monitor amplitude varying between moderately and severely abnormal trace	48
16	Normal cerebral function monitor amplitude but seizures are present and confirmed on EEG	49
17	EEG shows brief burst on isoelectric background	49

18	The acoustic windows	51
19	Mean reference values of cerebral blood flow velocities in middle cerebral, anterior cerebral and internal carotid	53
20	Horizontal plane. A color Doppler image of left MCA obtained via left temporal bone of the baby	53
21	Well-fitting ultrasound probe, positioned onto the anterior fontanel	54
22	Cerebral blood flow spectrum in normal neonates. It shows PSFV= 46.8cm/s	57
23	Inverse-perfusion during diastolic phase EDFV<0, RI>1.0	58
24	Cerebral tissues absencing blood perfusion during diastolic phases	58
25	Cerebral blood flow hyperperfusion	58
26	Left middle cerebral artery (MCA) infarction	60
27	CT scan of a full-term newborn with severe acute HIE	62
28	Coronal ultrafast MRI of early second-trimester fetal encephalomalacia	65
29	MRI of profound acute hypoxic ischemic brain injury in term infant. Axial T1	66
30	Stage III hypoxic ischemic encephalopathy. Diffusion-weighted imaging obtained within the first 24 hours	66
31	Near-infrared spectroscopy (NIRS) monitor probe in place on a critically ill term infant	71
32	Potential therapeutic intervention strategies	81
33	Neonatal hypothermia treatment via a cooling cap	106
34	Structural representation of EpoR binding to Epo	113
35	Hypoxia-induced neuronal protection mechanisms in the central nervous system	117
36	Neuroprotective properties of erythropoietin. Contributing mechanisms as well as affects observed in animal studies	118

37	Contributions of EPO activity to neuroprotection and repair	118
38	EPO neuroprotection in ischemic brain injury	120
39	Environmental stimuli evoke high frequency synaptic transmission and synaptic plasticity-regulated gene expression	131
40	Percentage of meconium stained liquor among patients	159
41	Presence of maternal illness among patients	159
42	Percentage of adrenaline during resuscitation	160
43	Percentage of patients requiring ambu bagging and endotracheal tube during resuscitation	160
44	Frequency distribution of mode of delivery among patients with different modes of therapy	161
45	Distribution of Sarnat staging among cases in the different groups of therapy	161
46	Comparison between hypoxic neonates among different modes of therapy as regards frequency distribution of inotropes usage	166
47	Comparison between neonates among different modes of therapy as regards frequency distribution of anticonvulsant usage	166
48	Comparison between neonates in different modes of therapy as regards survival	176
49	Comparison between patients with hypothermia versus rEpo as regards basal ganglia/watershed (BG/W) MRI score	182
50	Comparison between patients with hypothermia versus rEpo as regards neuromuscular function scale (NMS)	182
51	The temperature (degree Celsius) in the hypothermia group over first 72 hours after birth	183
52	Neonatal ictal seizures Ictal EEG with rhythmic discharge in the left central area C3	183
53	Cerebral blood flow spectrum in normal neonates.	184

54	Cerebral blood flow spectrum in severe hypoxic ischemic encephalopathy neonates in the supportive group.	184
55	Cerebral blood flow spectrum in severe hypoxic ischemic encephalopathy neonates in the hypothermia group.	185
56	Cerebral blood flow spectrum in moderate hypoxic ischemic encephalopathy neonates in the hypothermia group.	185
57	Cerebral blood flow spectrum in severe hypoxic ischemic encephalopathy neonates in the recombinant erythropoietin group.	186

List of Tables

Table No.	Title	Page No.
1	Criteria defining an intrauterine asphyxic event	9
2	Severity of fetal acidosis and hypoxic ischemic encephalopathy and other organ dysfunction	15
3	Phases of injury during reperfusion	26
4	Functional distinctions between necrosis and apoptosis	27
5	Molecular regulation of apoptosis	29
6	Effect of asphyxia on various organs in the newborn	32
7	Sarnat and Sarnat's 3 Clinical stages of perinatal hypoxic ischemic brain injury	33
8	Conditions causing neonatal depression and/or neonatal encephalopathy that mimic "perinatal asphyxia"	35
9	Laboratory markers of brain hypoxia used to support the diagnosis and severity of perinatal asphyxia	39
10	Type of EEG abnormality indicates a specific pathological variety of HI brain injury	43
11	Cranial ultrasonography: advantages and aims	51
12	Changes in cerebral blood flow velocity in neonatal pathological states	52
13	Scoring system for the assessment of perinatal asphyxia as depicted on MR images	68
14	Management of perinatal HIE	72
15	Summary of potential neuroprotective strategies	89
16	Proposed Management of Perinatal Asphyxia	90
17	Degree of hypothermia	101

18	Epo Effects in hematopoietic and nervous systems	110
19	Criteria for Defining Moderate and Severe Encephalopathy	142
20	HIE score of Thompson et al for neonatal hypoxic ischemic encephalopathy	147
21	Neuromuscular function scale (NMS)	150
22	Probability of abnormal neurologic outcome at 1 year using NMS-3 score	150
23	The basal ganglia/watershed (BG/W) score	157
24	Comparison between neonates with perinatal hypoxia and control as regards clinical data	158
25	Comparison between patients with supportive care versus hypothermia as regards clinical data	162
26	Comparison between patients with supportive care versus hypothermia as regards laboratory data and urine output in first 24 hours	163
27	Comparison between patients with rEpo versus supportive care as regards clinical data	164
28	Comparison between patients with rEpo versus supportive care as regards laboratory data and urine output in first 24 hours	165
29	Comparison between patients with hypothermia versus rEpo as regards clinical data	167
30	Comparison between patients with hypothermia versus rEpo as regards laboratory data and urine output in first 24 hours	168
31	Comparison between neonates in the different modes of therapy as regards Thompson's score day 1 and 5	168
32	Comparison between patients and control as regards BDNF and NSE values	169
33	Comparison between patients with different modes of therapy as regards BDNF (pg/mL) and NSE (μ g/l) values	170

34	Comparison between patients with supportive care versus controls as regards BDNF (pg/mL) and NSE (μ g/l) values	170
35	Comparison between patients with hypothermia versus controls as regards BDNF (pg/mL) and NSE (μ g/l) values	171
36	Comparison between patients with rEpo versus controls groups as regards BDNF (pg/mL) and NSE (μ g/l) values	171
37	Comparison between patients with supportive care versus hypothermia groups as regards BDNF (pg/mL) and NSE (µg/l) values	172
38	Comparison between patients with supportive care versus rEpo groups as regards BDNF (pg/mL) and NSE (µg/l) values	172
39	Comparison between patients with hypothermia versus rEpo groups as regards BDNF (pg/mL) and NSE (μ g/l) values	173
40	Comparison between patients with moderate versus severe Sarnat as regards BDNF (pg/mL) and NSE (µg/l) values	173
41	Comparison between BDNF (pg/mL) day 1 and 5, and NSE (µg/l) day 1 and 5 in the controls	174
42	Comparison between BDNF (pg/mL) day 1 and 5, and NSE (µg/l) day 1 and 5 in all patients	174
43	Comparison between BDNF (pg/mL) day 1 and 5, and NSE (µg/l) day 1 and 5 in patients of the supportive therapy group	174
44	Comparison between BDNF (pg/mL) day 1 and 5, and NSE day (µg/l) 1 and 5 in patients of the hypothermia therapy group	175
45	Comparison between BDNF (pg/mL) day 1 and 5, and NSE (µg/l) day 1 and 5 in patients of the rEpo therapy group	175

46	Comparison between survivors versus non survivors as regards BDNF (pg/mL) and NSE (µg/l) values	176
47	Comparison between patients with supportive care versus controls as regards transcranial ultrasound paremeters values	177
48	Comparison between patients with supportive care versus hypothermia groups as regards transcranial ultrasound paremeters values	178
49	Comparison between patients with supportive care versus rEpo groups as regards transcranial ultrasound paremeters values	179
50	Comparison between patients with hypothermia versus rEpo groups as regards transcranial ultrasound paremeters values	180
51	Comparison between patients with moderate versus severe Sarnat as regards MRI score	181
52	Comparison between patients with hypothermia versus rEpo as regards MRI score and neurological examination at 3 m	181

LIST OF ABBREVIATIONS

AAP : American Academy of Pediatrics

ACOG : American College of Obstetrics and Gynecology **aEEG** : Amplitude integrated electroencephalography

AIF : Apoptosis inducible factor

BBB : Blood brain barrier

BDNF : Brain derived neurotrophic factor

CTG : Cardiotocograph
CBF : Cerebral blood flow
CSF : Cerebrospinal fluid

CFM : Cerebral function monitor **CNS** : Central nervous system

Cho : Choline

CT: Computed tomography
CUS: Cranial ultrasonography

Cr : Creatine

DNA : Deoxyribonucleic acid
 DWI : Diffusion weighted imaging
 EEG : Electroencephalography
 EDV : End diastolic velocity

ELISA : Enzyme linked immunsorbant assay
ESP : Erythropoiesis stimulating protein

Epo : Erythropoietin

EpoR : Erythropoietin receptor

ERK : Extracellularly regulated kinase FDA : Food and drug administration

GABA : γ-aminobutyric acid

G-CSF : Granulocyte colony stimulating factor

HIF : Hypoxia inducible factor

HI : Hypoxia ischemia

HIE : Hypoxic ischaemic encephalopathy
HI–R : Hypoxic ischemic reperfusion
iNOS : Inducible nitric oxide synthetase

IL : Interleukin

ICH : Intracranial hemorrhageMRI : Magnetic resonance imagingMRS : Magnetic resonance spectroscopy

MPP : Matrix metalloproteinases mRNA : Messenger ribonucleic acid **MAPK** : Mitogen activated protein kinase

NICHD : National Institute of Child Health and Human Development

NAA : N-acetyl aspartate

NMDA : N-methyl-D-aspartate receptor

receptor

NIRS : Near infrared spectroscopy NICU : Neonatal intensive care unit

NGF : Nerve growth factor NSE : Neuron specific enolase

Ngb : Neuroglobin NTs : Neurotrophins NO : Nitric oxide

NOS : Nitric oxide synthase NPO : Nothing by mouth

PaCO2 : Partial pressure of carbon dioxide

PaO2 : Partial pressure of oxygen PSV : Peak systolic velocity PCM : Phase changing material

PI : Pulsatility index

rEpo : Recombinant human erythropoietin **rSO2** : Regional cerebral oxygen saturation

ROP : Retinopathy of prematurity

RI : Resistive index SWC : Sleep-wake cycles

TOBY: Total Body Hypothermia for Neonatal Encephalopathy Trial

TNF : Tumor necrosis factor
Trk : Tyrosine kinase
US : Ultrasound

VEGF : Vascular endothelial growth factor

ACKNOWLEDGEMENT

At first and foremost, thanks to "Allah" who gave me the power and bless to finish this work.

I would like to express my sincere gratitude and deep appreciation to **Prof. Dr. Mohamed Sami Elshimi,** Professor of pediatrics, Head of Neonatal Intensive Care Unit, Ain Shams University, who gave me the honor of working under his supervision, for his kind help, cooperation and valuable suggestions.

I am also deeply grateful and would like to express my sincere thanks and gratitude to **Prof. Dr Hesham Abd El**Samie Awad Professor of pediatrics, Ain Shams University, for his continuous encouragement, his kind support and guidance which were the cornerstone for this work and appreciated suggestions that guided me to accomplish this work.

I would like also to express my deep gratitude and respect to **Prof. Dr. Sahar Mohamed Ahmed Hassanein**, Professor of Pediatrics, Ain Shams University for her unlimited and close supervision, who freely gave her time, effort and experience which contributed a great deal to the success of this work.

Also, I would like to express my deep thanks and gratitude to **Prof. Dr. Safaa Shafik Imam**, Professor of Pediatrics, Ain Shams University for her valuable help, keen encouragement in the progress and accomplishment of this work. I am very privileged and honored to have her as my supervisor.