Comparative study between perichondrial graft and tissue engineered cartilage in reconstruction of articular cartilage defects

Thesis

Submitted for partial fulfillment of M.D. Degree in Plastic and Reconstructive Surgery

By Riham Zakaria Ahmed Hassan Lashin

M.B.,B.Ch - M.Sc. general surgery Ain Shams University

UNDER SUPERVISION OF

Prof. Dr/ Mahmoud Magdi Sherif

Professor of Plastic and Reconstructive Surgery Faculty of Medicine - Ain Shams University

Dr/ Basim Mohamed Zaki Salem

Assistant Professor of Plastic and Reconstructive Surgery Faculty of Medicine - Ain Shams University

Dr/ Soha Fathy El Mekkawy

Assistant Professor of Plastic and Reconstructive Surgery Faculty of Medicine - Ain Shams University

Dr/ Azza Abd El Moneim Attia

Lecturer of Histology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain shams university **2010**

دراسة مقارنة بين إستخدام رقع محيط الغضروف والغضروف المخلق بالهندسة النسيجية في اعادة إصلاح عيوب الغضروف المفصلي

رسالة توطئة للحصول على درجة الدكتوراة في جراحة التجميل والإصلاح

مقدمة من

الطبيبة / ريهام زكريا أحمد حسن لاشين بكالوريوس الطب و الجراحة و ماجستير الجراحة العامة كلية الطب جامعة عين شمس

تحت إشراف

الأستاذ الدكتور / محمود مجدي شريف أستاذ جراحة التجميل و الإصلاح كلية الطب جامعة عين شمس

أستاذ مساعد دكتور / باسم محمد زكي سالم أستاذ مساعد جراحة التجميل و الإصلاح كلية الطب جامعة عين شمس

أستاذ مساعد دكتوره / سها فتحي المكاوي أستاذ مساعد جراحة التجميل و الإصلاح كلية الطب جامعة عين شمس

دكتوره / عزة عبد المنعم عطية مدرس علم الأنسجة كلية الطب جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٠

INTRODUCTION

AIM OF WORK

REVIEW OF LITERATURE

MATERIALS AND METHODS

RESULTS

DISCUSSION

SUMMARY AND CONCLUSION

REFERENCES

ARABIC SUMMARY

INTRODUCTION

Articular cartilage is an avascular, alymphatic, aneural tissue with a relatively high matrix to cell volume ratio (Schumacher et al., 1994). It is a hyaline type of cartilage. Owing to its histological structure, this hyaline cartilage performs two functions: increase the area of load distribution to reduce the static and dynamic loads imposed on the bone ends, and allow relative movement of the opposing joint surfaces with minimal friction and wear (Armstrong and Mow, 1980). Hyaline cartilage is distinct from most tissues because it has only limited self-regenerative ability due to its vascular deficiency (Mauck, 2003; Ramallal et al., 2004). This limited ability to self-repair is somewhat modulated by the size, location, and depth of the cartilage lesions (Mankin, 1982).

Numerous strategies have been employed to repair cartilage defects with an end goal of filling the defect with tissue having biochemical and biomechanical properties approximating surrounding native tissue. Such clinical and experimental efforts include subchondral drilling or microfracture technique (Blevins et al., 1998), perichondrial grafts (Homminga et al., 1990), periosteal grafts (Poussa et al., 1980), osteochondral grafts (Burks et al., 2006), cell transplantation therapy in the form of single cell suspensions of either terminally differentiated chondrocytes (Brittberg et al., 2003) or undifferentiated bone marrowderived mesenchymal stem cells (MSCs) (Wakitani et al., 1994), and tissue-engineered constructs (Fragonas et al., 2000; Fuentes-Boquete et al., 2004; Jiang et al., 2007).

Subchondral drilling or microfracture technique involves breaching the subchondral bone to allow pluripotent stem cells from the marrow to remodel the fibrin clot in the defect into fibrocartilage (**Johnson**, **1989**). This technique, while advantageous over other treatment options due to reduced donor site morbidity, its usage have been very limited because it contribute to a large amount of fibrocartilaginous tissue which fail to withstand the mechanical demands of articular cartilage (**Steadman** *et al.*, **1997**).

Soft tissue grafts involving the transplantation of periosteum and perichondrium to full thickness defects of articular cartilage have been used extensively both in animal models and in human clinical trials. The results have been variable, although hyaline-like tissue had been reported (Carranza- Bencano *et al.*, 1999).

The use of rib perichondrium for articular cartilage reconstruction was introduced and investigated by many authors (Engkvist et al., 1979, Kwan et al, 1989 and Homminga et al., 1990). Compared with ear perichondrium, Homminga et al., 1990 found that the perichondrium of the rib produced a repair tissue that closely resembles hyaline cartilage. Accordingly, the rib perichondrium was widely used in repair of articular cartilage defects with reasonable results (Skoog and Johansson, 1976 and Sully et al., 1980).

Free periosteal grafts were found to stimulate an enchondral bone formation (Poussa and Ritsila 1979) and in a chondrotropic environment it favors cartilage formation (Poussa et al., 1980). The chondrogenic potential of the periosteum is attributed to chondrocyte precursor cells in its cambial layer (Rubak et al., 1982; Zarnett and Salter, 1989; O'Driscoll et al., 1999; Ito et al., 2001).

Osteochondral transplantation involves harvesting one large graft or multiple smaller cylinders (mosaicplasty) from minimal load-bearing portions of the joint and transplanting them to cover defects in higher load-bearing areas (Hangody et al., 1998). But, this graft is limited by donor tissue availability required to fill large osteochondral defects (Jakob et al., 2002), the questionable viability of the chondrocytes from the donor tissue following graft harvest, whether tissue derived from a non-load bearing source can withstand the stress of a load-bearing area, and the extent of donor site morbidity (Evans et al., 2004).

Due to the inconvenience of all previous traditional techniques, a more sophisticated treatment option in the form of cell transplantation therapy was introduced. Autologous chondrocyte transplantation (ACT) was first described by **Brittberg** *et al.*, in 1994. The procedure involves harvesting chondrocytes from a non-load bearing region of the articular cartilage which expanded in culture media, and second procedure is then performed by taking a periosteal graft from the medial tibia, sutured over the defect; and cultured chondrocytes are then injected into the defect. The use of matrix scaffolds in tissue engineering has paved the way for use of periosteal patch and the two-stage procedure (**Tuli** *et al.*, 2003). **Horas** *et al.*, 2003 documented that the neocartilage consisted primarily of fibrocartilage with small localized hyaline-like regions near the subchondral bone (**Kurkijarvi** *et al.*, 2007). In addition to this, there are other disadvantages; like being too much expensive, difficult technique, and two stage procedure (**Wood** *et al.*, 2006).

Another source of the cell transplantation therapy is the bone marrowderived mesenchymal stem cells (MSCs). These cells were proven to have the potential to facilitate osteochondral differentiation when implanted in vivo. The neotissue contained hyaline-like cartilage and its composition is similar to the surrounding native tissue (Ashhurst et al., 1990). This resulted in an increased interest in the use of these cells in cartilage tissue engineering (Wakitani et al., 1994). Its usage was based on the fact that MSCs are multipotent stem cells that have the ability to self-renew and intrinsically repair and regenerate the tissue in which they reside (Roufosse et al., 2004).

The use of MSCs has advantages over chondrocytes implantation due to limited donor site morbidity, a less invasive procedure is required to obtain MSCs than native chondrocytes, only one surgical procedure on the damaged joint is required, and that MSCs have a greater proliferative capacity than differentiated chondrocytes (Wakitani et al., 2007). So current research focused on the use of bone marrow-derived MSCs as a recent strategy in the repair of cartilage defects, and now many alternative sources of MSCs such as the synovial membrane, blood, adipose tissue, muscle, and trabecular bone have been considered (Raghunath et al., 2010).

A number of studies have investigated all these treatment options, in an attempt to bypass articular cartilage's limited ability to self-repair, and to achieve tissue similar to native surrounding tissue. Nevertheless, controversy and uncertainty remain with respect to the best available treatment option. Perichondrial grafting and the use of bone marrow-derived MSCs in reconstruction of full thickness articular cartilage defects are known to build up hyaline like tissue in the reconstructed joints without any donor site affection. Clinically, they have been studied with reasonable results; however, no previous studies compared between both techniques in reconstruction of full thickness articular cartilage defects.