Impact of Stem Cell Therapy In Chronic Critical Lower Limb Ischemia

Thesis
Submitted for Partial Fulfillment
of MD Degree of Cardiology
By
Yasser Ahmed Sadek Iberahem
MBBCh: MSc

Under Supervision of

Prof. Dr. Mohamed Awad Taher

Professor of Cardiology
Faculty of Medicine – Ain Shams University

Prof. Dr. Ahmed Abd EL-Rahman Sharaf El-Deen

Professor of Cardiology
Faculty of Medicine – Ain Shams University

Prof. Dr. Massa Saluzzo Ceasere

Professor of radiology intervention
Faculty of Medicine – San Matteo University(Italy)

Dr. Hamdy Soliman Mahmoud

Consultant of Cardiology National Heart Institute

Dr. Sherief Mansour Soliman

Lecturer of Cardiology
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2012

تأثير العلاج بواسطة الخلايا الجزعية في الشرايين الطرفية

توطئة للحصول على درجة الدكتوراة في القلب والأوعية الدموية

/

الأستاذ الدكتور/ محمد عوض طاهر

الأستاذ الدكتور/ أحمد عبد الرحمن شرف الدين

الدكتور/ شيزار ماسا سالوزو

الدكتور/ حمدي سليمان محمود

الدكتور/شريف منصور سليمان

_

List of Abbreviations

ABI : Ankle-brachial index.

ACC : American College of Cardiology

ACE : Angiotensin-converting enzyme.

ACS : Acute coronary syndromes.

AHA : American Heart Association.

Apo C-III : Apolipoprotein C-III.

CAPRIE : Clopidogrel versus Aspirin in Patients at Risk

of Ischemic Events.

CFA : Common femoral artery.

CLEVER: Claudication: Exercise Versus Endoluminal

Revascularization.

CLI : Critical limb ischemia

COPD : Chronic obstructive pulmonary disease

CTA : Computed tomographic angiography

DIC : Disseminated intra vascular coagulopathy.

DNA : Deoxyribonucleic acid.

DP : Dorsalis pedis.

FDA : Food and Drug Administration

HDL : High-density lipoprotein

HMG : Hydroxymethyl glutaryl.

IC : Intermittent claudication.

ICAM-1 : Intercellular adhesion molecule-1

INR : International normalized ratio

LDL : Low-density lipoprotein

Lipoprotein (a): Lp [a]

List of Abbreviations (Cont.)

MI : Myocardial infarction

MRA : Magnetic resonance angiography.

NF- α : Tumor necrosis factor- α .

NF- κ B : Nuclear factor- κ B.

NO : Nitric oxide.

OR : Odds ratio.

Ox-LDL : Oxidized LDL.

P : Statistical significance

PAD : Peripheral arterial disease.

PAI-1 : Plasminogen activator inhibitor-1.

PDGF : Platelet-derived growth factor.

PPAR- α : Peroxisome proliferator-activated receptor- α .

PT : Posterior tibial

PTA : Percutaneous trans-luminal angioplasty.

SFA : Superficial femoral artery.

SMC : Smooth muscle cells.

TASC : Trans Atlantic Inter-Society Consensus

Working Group.

TGF- β : Transforming growth factor- β

TRLPs : Triglyceride-rich lipoproteins.

VCAM-1 : Vascular cell adhesion molecule-1.

VLDL : Very low density lipoprotein.

List of Tables

Table	Title	Page
1	Classification of PAD: Fontaine's Stages	33
	and Rutherford's Categories	2.5
2	Disease Severity and Ankle-Brachial Index	35
	(ABI) (Mayo clinic Vascular Laboratory	
	Criteria	
3	Modified TASC Morphological	46
	Classification of Iliac Lesions	
4	Modified TASC Morphological	51
	Classification of Femoral-popliteal Lesions	
5	Baseline characteristics of the patients	82
6	comparison of personal characteristics	83
	between the two study groups	
7	Comparison of medical characteristics	84
	between the two study groups	
8	Comparison of medical characteristics	84
	between the two study groups	
9	Description of medical past history among	85
	all study patients	
10	Comparison of medical past history	86
	between the two study groups	
11	Comparison of History and site of PTA and	87
	bypass grafting between two study groups	
12	Comparison of clinical symptoms and signs	87
	between two study groups	
13	Comparison of ejection fraction (EF %)	88
	among all study patients	
14	comparison of site of affected limb and site	89
	of lesions between two study groups	
15	comparison of ABI before treatment 3	91
	months after treatment among the two	
	study group	
16	Comparison of pain free walk distance	92
	between two study groups	

List of Tables (Cont.)

Table	Title	Page
17	Comparison of pretreatment duplex for	92
	suprapopliteal, porneal, anterior and	
	posterior tibial artery between two study	
	groups	
18	Comparison of post treatment duplex for	93
	suprapopliteal, porneal, anterior and	
	posterior tibial artery between two study groups	
19	Comparison between anterior tibial duplex	95
	pre and post injection among study group 1	
20	Comparison between anterior tibial duplex	96
	pre and post injection among study group 2	
21	Comparison between posterior tibial duplex	97
	pre and post injection among study group 1	
22	Comparison between posterior tibial duplex	97
	pre and post injection among study group	0.7
23	Comparison of post treatment healing of	97
	leg ulcer and amputations between two study groups	
24	Comparison between posterior tibial duplex	98
	pre and post injection among study group II	
25	Comparison of post treatment healing of	99
	leg ulcer and amputations between two	
	study groups	
26	Description of number of stem cells injected among study group I.	99
	among study group 1.	

List of Figures

List of Figures		
Fig.	Title	Page
1	Initiation of atherosclerosis	12
2	Inflammation links classic risk factors to	14
	altered cellular behavior within the arterial	
	wall and secretion of inflammatory markers	
	in the circulation	
3	Progression of atherosclerosis	16
4	Thrombotic complication of atherosclerosis	18
5	Risk of developing lower extremity	27
	peripheral Arterial disease	
6	Algorithm for evaluating patients in whom	33
	peripheral arterial disease is suspected	
7	A Distal aorta severe stenosis. B after	44
	treatment with balloon-expandable sent	
8	Baseline angiography of TASC D lesion	45
9	Left Baseline angiography of tandem	50
	critical lesions of the deep femoral	
	(profunda femoris) artery. Right	
	Endovascular profundaplasty after balloon	
	Angioplasty	
10	Data from randomized trial of SFA lesions	52
	showing superiority for stent over balloon	
	angioplasty at 1 year for maximal distance	
4.1	walked and ABI	=-
11	Kaplan–Meier plot of cumulative	53
	recurrence rate after femoro-popliteal	
	balloon angioplasty compared with	
	angioplasty with Brachytherapy showing	
	no difference	

List of Figures (Cont.)

Fig.	Title	Page
12	A Angiogram of a tibio-peroneal artery stenosis. B Final angiogram after treatment with a coronary balloon-expandable stent	58
13	Limb salvage after marrow implantation in two patients in group A	67
14	diagram shows medical characteristics among the two study groups	84
15	diagram shows medical past history among all study patients	85
16	diagram shows comparison of History and site of PTA and bypass grafting between two study groups figure	88
17	diagram shows comparison of clinical symptoms and signs between two study groups	90
18	diagram shows Comparison between two groups as regard ABI before treatment 3 months after treatment and the change in ABI due to treatment	93
19	diagram shows comparison of pain free walk distance between two study groups	94
20	Chronic ulcer pre treatment with stem cell therapy	101
21	Chronic ulcer post treatment with stem cell therapy	101
22	Chronic ulcer pre treatment with stem cell therapy	102
23	Chronic ulcer pre treatment with stem cell therapy	102

Contents

	age
List of Abbreviations	
List of Tables	
List of Figures	
Introduction Aim of the work	1
Chapter one:	
* Atherosclerosis pathophysiology and the Ro	
in Peripheral Vascular Disease	
* Blood vessels structure and function	
* Atherosclerosis	7
Chapter two: Peripheral Arterial Disease: Diagnosis	
and Management	26
* Risk factors	27
* Clinical features	
* Intermittent claudication	32
* Critical limb ischemia	33
* Diagnosis	34
* Treatment	36
* Specific drug therapy for PAD	38
Chapter three: Endovascular therapies for periphera	al
arterial disease	42
* Patient Selection and Outcomes	43
* Aorto-iliac Disease	43
* Common and Deep Femoral Artery Disease	48
* SFA and Popliteal Artery Disease	50
* Brachytherapy	53
* Debulking Strategies	
* Cryoplasty	55
* Cutting-Balloon Angioplasty	55
* Drug-Eluting Balloons and Stents	55
* Covered Stents	56

* Tibial and Peroneal Artery Disease	57
* Drug-Eluting Stents	59
* Surgical bypass	59
Chapter four: Stem cell therapy	61
* Angiogenesis	62
* The Extent of Periphal Vascular Diseases	66
* Therapeutic Angiogenesis	66
* Cell-based Therapy	68
* Current Research and Future Directions	71
* Future Perspectives	73
Patients and Methods	75
Results	82
Discussion	101
Conclusion	113
References	114

·

First of all thanks to **Allah** who granted me the ability to accomplish this work.

Words can never express my deepest gratitude and sincere appreciation to **Dr. Mohamed Awad Taher** Professor of Cardiology Faculty of Medicine Ain Shams University for his continuous encouragement excellent guidance powerful support extreme patience and faithfully fatherly advice. I really had the honor of having his supervise for this work.

My deepest heartily thanks appreciation and sincerest gratitude to **Dr. Ahmed Abd EL-Rahman Sharaf El-Deen** Professor of Cardiology Faculty of Medicine Ain Shams University who spared no time and effort to provide me with her valuable instructions and his expert touches. His wise supervision gave me invaluable opportunity to benefit from his faithful guidance and continuous support.

My everlasting gratitude to **Dr. Sherief Mansour Soliman** lecuture of Cardiology Faculty of Medicine Ain Shams University for his great help continuous guidance and for offering me much of his time and effort. His extreme careful supervision and precise advices are more that I can express.

My deepest heartily thanks, appreciation and sincerest gratitude to **Dr. Massa Saluzzo Ceasere**. Professor of radiology intervention, Faculty of Medicine, San Matteo University, pavia, Italy who spared no time and effort to provide me with his valuable instructions and his expert touches. His wise supervision gave me invaluable opportunity to benefit from his faithful guidance and continuous support outside my country.

My everlasting gratitude to **Dr. Hamdy Soliman Mahmoud** Professor of Cardiology NHI for his great help continuous guidance and for offering me much of his time and effort. His extreme careful supervision and precise advices are more that I can express. Finally my truthful affection and love to my parents who were and will always be by my side all my life.

Yasser Ahmed Sadek Iberahem

تأثيرالعلاج بواسطة الخلايا الجزعية في الشرايين الطرفية

: ±) (). (). خضع جميع المرضى للآتي: •

· :

: --

-) .

Introduction

Peripheral arterial disease (PAD) is one manifestation of systemic atherosclerosis. The prevalence of PAD increases with the age of the population. ^{1,2}. It is important to remember the significant association of coincident coronary artery disease and cerebro-vascular disease in these patients, because it represents the major cause of major morbidity and mortality in the PAD population.³.Remarkable technological advances in the past decade, along with patient preference, have shifted revascularization strategies from traditional open surgical lower-morbidity approaches toward percutaneous endovascular treatments. Catheter-based revascularization of the lower extremities was first performed by Charles Dotter⁴ and advanced by Andreas Gruentzig, who employed then newly developed inflatable balloon catheters that could dilate vascular stenosis.⁵

The availability of stents, more than any other advance, has fueled the growth of catheter-based procedures by improving the safety, durability, and predictability of percutaneous revascularization.

Endovascular therapy offers several distinct advantages over open surgical revascularization for selected lesions. ^{6,7}. It is performed with local anesthesia, which enables the treatment of patients who are at high risk for general anesthesia. The morbidity and mortality from catheter-based therapy is extremely low, especially compared with open surgical revascularization. After successful percutaneous revascularization, patients are ambulatory on the day of treatment, and unlike after vascular surgery, they can often return to normal activity within 24 to 48 hours of an uncomplicated procedure. Endovascular therapies generally do not preclude or alter subsequent surgery and may be repeated if necessary.