IMPACT OF LIPOPROTEIN LIPASE GENE POLYMORPHISMS ON SEVERITY OF CORONARY ARTERY DISEASE

Protocol of Thesis

Submitted for Partial Fulfillment of M.D. Degree In Clinical and Chemical Pathology

Ву

Walaa Ahmed Yousry Mohamed Kabiel
M.B.B.Ch.M.Sc. (Clinical and Chemical Pathology)

Ain Shams University

Supervised by

Professor/ Farid Adly Farid
Professor of Clinical and Chemical Pathology
Faculty of Medicine- Ain Shams University

Professor/ Manal Mohamed Abd Al Aziz

Professor of Clinical and Chemical Pathology

Faculty of Medicine- Ain Shams University

Professor/ Karim Yehia Shaheen
Professor of Clinical and Chemical Pathology
Faculty of Medicine- Ain Shams University

Doctor/ Walid Abd El- Azim El-Hammady Assistant Professor of Cardiology Faculty of Medicine- Ain Shams University

Doctor/ Hala Abdelal Ahmed
Lecturer of Clinical and Chemical Pathology
Faculty of Medicine-Ain Shams University
Faculty of Medicine
Ain Shams University
2013

Acknowledgement

First of all praise and thanks to ALLAH providing me with time and effort to accomplish this thesis

I wish to thank my Prof. Dr. Farid Adly Farid, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University for his support throughout this work.

A special tribute and cordial thanks are paired to Prof. Dr. Manal Mohamed Abd Al Aziz, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University for her authentic guidance, kind supervision to accomplish this work.

I wish to express my deep gratitude to Prof. Dr. Karim Yehia Shaheen, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University. for his enthusiasm, meticulous guidance, precious remarks and follow up throughout this work. I had the honor to work under his supervision, and his scientific remarks are beyond achnowledgement.

I am greatly indebted to **Dr. Hala Abdelal**Ahmed Assistant Professor of Clinical and
Chemical Pathology, Faculty of Medicine, Ain
Shams University, for her continuous
encouragement and sincere contribution in this
work with her time and effort.

I am also greatly indebted to **Dr. Walid Abd** El- Azim El-Hammady, Assistant professor of Cardiology, Faculty of Medicine, Ain Shams

University for his sincere contribution in this work with his time and precious remarks.

I would like to express my profound thanks and great gratitude to Dr. Omayma Mohamed Hassanin, Associate consultant of Clinical Pathology, Molecular Biology Department, Medical Research Center, Faculty of Medicine, Ain-Shams University Hospitals for her sincere help, and great patience. Really, she gave me generously of her time, I would like to express my deepest thanks for her continuous encouragement, help and support.

I would like to express my deepest thanks to **Dr. Menna Allah Shaban** for her help and support.

At the end I would like to express my sincere gratitude and great indebtedness to those who gave me everything and not waiting for any reward, to my great parents, who taught me how to be a good doctor, who gave me the strength to go on through life and who are always in my back, to the soul of my dear sister Yasmin who taught me how to write a thesis on a computer, may God bless her soul and to my four beautiful daughters Farah, Mariam, Lily and little Zeina to whom I owe more than any words can express. Dear family, you are really the candle that lighten my way throughout life, hope to make you always proud of me.

Finally, my acknowledgement and love to my outstanding husband **Hisham** for his patience, support and kind help throughout my career.

List of Contents

		Page No.
Introduc	etion	1
Aim of t	he work	3
I. Co	ronary Artery Disease	
A.	Anatomy of Coronary Arteries	4
B.	Definition and Epidemiology of	
	Coronary Artery Disease	6
C.	Classification of CAD	
	 Stable Angina Pectoris 	6
	2. Acute Coronary Syndrome	7
D.	Pathophysiology of CAD	9
	 Stages of Atherosclerosis 	
	Formation and Progression	9
	2. Mechanisms of Plaque	
	Disruption	13
E.	Risk Factors of CAD	
	 Modifiable Risk Factors 	14
	Non-Modifiable Risk Factors	24
	Other Medical Conditions	34
F.	Diagnosis of CAD	
	 Medical History 	33
	Physical Examination	33
	3. Electrocardiogram	34
	4. Echocardiogram	34
	Coronary angiography	36
	Radio-isotope Myocardial	
	Perfusion Scanning	38
	Laboratory Diagnosis of CAD	38
	 a. Pro-inflammatory Cytokines 	
	i. Interleukin-6	38
	ii. Tumour necrosis factor alpha	40
	 b. Markers of plaque destabilization 	
	 Matrix metalloproteinases 	41
	ii. Myeloperoxidase	41
	iii. Adhesion molecules	43

c. Markers of plaque rupture i. Soluble CD40 ligand ii. Placental growth factor iii. Pregnancy-associated plasma protein A	44 44 45
d. Acute phase reactants	
i. C-reactive protein	46
e. Markers of cardiac ischemia	
i. Ischemia-modified albumin	48
ii. Unbound free fatty acids	49
iii. Choline	50
f. Markers of cardiac necrosis	- 4
i. Creatine kinase	51
ii. Creatine kinase-MB	53
iii. Cardiac troponins	54
iv. Lactate dehydrogenase	60
g. Markers of myocardial dysfunction	
i. Brain natriuretic peptide	60
ii. Pro-brain natriuretic peptide	62
II. Molecular Aspects of Hyperlipidemia A. Definition and Classification of	63
Hyperlipidemia	63
 Hyperlipidemia Type I 	67
Hyperlipidemia Type II	67

List of Contents, Cont..

	Page No.
3. Hyperlipidemia Type III4. Hyperlipidemia Type IV5. Hyperlipidemia Type V	71 72 72
B. Reduced HDL Cholesterol and	
Elevated Triglycerides	74
C. Elevated LP (a)	75
III. Lipoprotein Lipase Gene	
 A. Structure of Lipoprotein Lipase 	
Gene	78
B. Structure and Synthesis of LPL	
Enzyme	80
C. Location and Tissue Expression of	
LPL Enzyme	83
 D. Physiological Role of LPL Enzyme 	
 Role of LPL in Lipid Metabolism 	
and Transport	84
LPL Bridging Function	84
Role of LPL in Vascular Smooth	
Muscle Cell Proliferation	85
Role of LPL in Expression of	
TNF-α	86
E. Regulation of LPL Expression	
 Transcriptional Control 	89
Post-transcriptional,	
Translational and Post-	
translational Regulation	93
LPL Regulation by Interactive	
Proteins	96
Nutritional and Hormonal	
Regulation of LPL	99

List of Contents, Cont..

	Page No.
F. Role of LPL in Atherosclerosis 1. Non-Catalytic Bridging Action	101
of Macrophage LPL	102
2. The Catalytic Action of LPL	102
LPL acting as an Atherogenic Ligand	103
4. Anti-atherogenic Nature of LPL	103
G. LPL Gene Polymorphism	106
1. Introduction	106
2. Types of LPL Gene	
Polymorphism II. Mathada of Assay of I. Di	108
H. Methods of Assay of LPL1. Analytical Methods	113
Molecular Methods	119
Subjects and Methods	128
Results	150
Discussion	174
Summary and Conclusion	185
Recommendations References	188 189
Arabic Summary	109

List of Figures

	Page No.
Figure (1): Normal structure of the wall of a	
healthy artery	5
Figure (2): Classification of acute coronary	
syndrome	8
Figure (3): Fatty-streak formation	11
Figure (4): Formation of an advanced,	
complicated lesion of atherosclerosis	13
Figure (5): The vulnerable plaque and	
consequences of plaque rupture	15
Figure (6): Role of adipokines in insulin	
resistance and endothelial dysfunction	23
Figure (7): Domain structure of LDL receptor	27
Figure (8): Coronary angiography showing	
normal right coronary artery	37
Figure (9): Biochemical profile in CAD patients	39
Figure (10): Biomarkers associated with	
various pathophysiological processes	
associated with acute myocardial infarction	40
Figure (11): Troponin release after myocardial	
injury	78
Figure (12): LPL gene structure and proximal	79
promoter	

List of Figures, Cont..

	Page No.
Figure (13): Structure of LPL enzyme Figure (14): The JAK-STAT signaling pathway Figure (15): Schematic presentation of the complex mechanisms of tissue-specific LPL	83 88
regulation	90
Figure (16): Cell biology and posttranslational	
modifications of LPL	95
Figure (17): DNA molecule 1 differs from DNA	407
molecule 2 at a single base-pair location Figure (18): Different pathways by which LPL	107
S447X may exert its beneficial effects	113
Figure (19): The reaction sequence of the	
automated method	114
Figure (20): Scheme representing the principle	440
of Sandwich ELISA Figure (21): Comparison of ELISA vs. DELFIA	116
assay design	117
Figure (22): DELFIA technique	118
Figure (23): Schematic drawing of the PCR	
cycle	121
Figure (24): A point mutation leads to the	
formation of different single-strand conformations of the mutant DNA.	124
Figure (25): 9700 Applied Biosystem PCR	124
thermal cycle for DNA amplification	133
Figure (26): The QIAamp DNA Blood Mini Kit	
Spin column extraction procedure	137
Figure (27): 2% agarose gel electrophoresis of	
HindIII polymorphism	142
Figure (28): 2% agarose gel electrophoresis of	143
S447X polymorphism Figure (29): Statistical comparison between	143
different subgroups of CAD patients and control	
group as regards total cholesterol	161

List of Figures, Cont..

5	
	Page No.
Figure (30): Statistical comparison between	
different subgroups of CAD patients and control	
group as regards triglycerides	162
Figure (31): Statistical comparison between	
different subgroups of CAD patients and control	
group as regards HDL-cholesterol	163
Figure (32): Statistical comparison between	
different subgroups of CAD patients and control	
group as regards LDL-cholesterol	164
Figure (33) and Figure (34): Statistical	
comparison between observed and expected	
genotypes of HindIII polymorphism in all	
studied population	171
Figure (35) and Figure (36): Statistical	
comparison between observed and expected	
genotypes of S447X polymorphism in all	
studied population	173
• •	

List of Tables

	Page No.
Table (1): Modifiable and non-modifiable CAD	
risk factors	16
Table (2): The relationship between risk of	
developing CAD	19
Table (3): Genetic factors in lipoprotein	
abnormalities	65
Table (4): Fredrickson classification of	
hyperlipidemias	66
Table (5): Genes affecting HDL cholesterol	
levels	76
Table (6): Genotype and frequency of any 2	
alleles on the same locus	147
Table (7): Descriptive and comparative	
statistics of the demographic data among all	
the CAD patients versus healthy controls	155
Table (8): Descriptive and comparative	
statistics of the laboratory data and risk ratios	
among all the CAD patients versus healthy	
controls	156
Table (9): Descriptive statistics of the	
demographic data among different subgroups	
of CAD patients	157
Table (10): Comparative statistics of the	
demographic data among different subgroups	
of CAD patients	158
Table (11): Descriptive statistics of laboratory	
data and risk ratios among different subgroups	
of CAD patients	159
Table (12): Comparative statistics of laboratory	
data and risk ratios among different subgroups	
of CAD patients	160

List of Tables, Cont..

	Page No.
Table (13): Descriptive and comparative	
statistics of the allelic frequencies of HindIII and	
S447X polymorphisms of the LPL gene among	
all CAD patients versus healthy	165
Table (14): Descriptive and comparative	
statistics of the genotype frequencies of HindIII	
and S447X polymorphisms of the LPL gene	
among all CAD patients versus healthy controls	165
Table (15): Comparative statistics of the blood	
lipid levels and calculated risk ratios according	
to the HindIII and the S447X polymorphisms of	400
the LPL gene among all the studied groups	166
Table (16): Descriptive and comparative	
statistics of blood lipid levels and calculated risk	
ratios in the H ⁺ S and H ⁻ X haplotypes of the LPL	460
gene carriers among all the studied groups	168
Table (17): Descriptive and comparative	
statistics among H ⁺ S and H ⁻ X haplotypes of the	
LPL gene carriers as regards clinically recommended blood lipid levels and risk ratio	
cut-off values	169
Table (18): Distribution of all studied population	103
according to the 3 genotypes of HindIII	
polymorphism	170
Table (19): The observed and expected values	170
of the HindIII polymorphism genotypes in all the	
studied population	170
Table (20): Distribution of all studied population	
according to the 3 genotypes of S447X	
polymorphism	172
Table (21): The observed and expected values	
of the S447X polymorphism genotypes in all	
the studied population	172

List of Abbreviations

	List of Apple viations
ACB	Albumin cobalt binding
ACC	American college of cardiology
ACS	Acute coronary syndrome
ADAM	9-anthryldiazomethane
AMI	Acute myocardial infarction
Angpt1	Angiopoietin like 1 family proteins
ANP	Atrial natriuretic peptide
APOA5	Apolipoprotein A5
ApoE	Apolipoprotein E
AS-PCR	Allele specific polymerase chain reaction
ATP	Adenosine triphosphate
cDNA	Complementary DNA
CAD	Coronary artery disease
CETP	Cholesteryl ester transfer protein
CK	Creatine Kinase
DELFIA	Dissociation enhanced lanthanide fluorescence
	immunoassay
DM	Diabetes mellitus
ECG	Electro-cardiography
EIA	Enzyme immunoassay
ELISA	Enzyme linked immune-sorbent assay
eNOS	Enzymatic nitric oxide synthase
ERs	Estrogen receptors
ESC	European Society of Cardiology
FCHL	Familial combined hyperlipidemia
FFAs	Free fatty acids
FFAu	Free fatty acids unbound
FH	Familial hypercholesterolemia
GAS	γ- activated site
GPBB	glycogen phosphorylase isoenzyme BB
GPIHBP1	Glycosylphosphatidylinositol- anchored high
	density lipoprotein-binding protein 1
HDL-c	High density lipoprotein cholesterol
HindIII	Hind three
HIV	Human immunodeficiency virus
HLP	hyperlipoproteinemia
HPLC-MS	High performance liquid chromatography-mass
	spectrometry

HS	Heparan sulphate
Hs-CRP	highly-sensitive C-reactive protein
HSPG	Heparan sulphate –proteoglycans
ICAM-1	Intercellular adhesion molecule-1
IEMA	Immuno-enzymometric assay
IGF	Insulin growth factor
IL-1	Interleukin-1
IMA	Ischemia modified albumin
IRMA	Immuno-radiometric assay
IVUS	Intrvascular ultrasonography
JAK-STAT	Janus kinase- signal transducer and activator of
	transcription
LCAT	Lecithin cholesterol acyl transferase
LD	Lactate dehydrogenase
LDL-c	Low density lipoprotein cholesterol
LDLR	Low density lipoprotein receptor
LMF-1	Lipase maturation factor 1
Lp(a)	Lipoprotein a
LPL	Lipoprotein lipase
LRP	LDL receptor related protein
MAbs	Monoclonal antibodies
MCA	Melting curve analysis
MCP-1	Monocyte chemotactic protein-1
McSNP	Melting curve analysis of SNPs
MI	Myocardial infarction
MLPA	Multiplex ligation- dependent probe amplification
-	assay
MMP	Matrix metalloproteinase
МОН	Ministry of health
MPO	Myeloperoxidase
MTHFR	Methylenetetrahydrofolate reductase
NADPH ⁺	Nicotinamide dinucleotide phosphate
NCEP-ATP III	National cholesterol education program and adult
-	treatment panel III
NSTEMI	Non-ST-segment elevation myocardial infarction
PAI-1	Plasminogen activator inhibitor -1
PAPP-A	Pregnancy-associated plasma protein A
PDGF	Platelet derived growth factor
PHP	post heparin plasma
PI3K	phosphoinositol 3 phosphate
PKC	Protein kinase C

PLCHO	Plasma choline
PLGF	Placental growth factor
PPAR	Peroxisome proliferator activated receptor
PPRE	Peroxisome proliferator response element
RAP	receptor associated protein
RFLP-PCR	Restriction fragment length polymorphism –
	polymerase chain reaction
S447X	Ser 447X
sCD40L	Soluble CD40 ligand
SNP	Single nucleotide polymorphism
SSCP	Single strand conformation polymorphism
STEMI	ST elevation myocardial infarction
TAG	Triacylglycerol
TGF-β	Transforming growth factor beta
TGs	Triglycerides
TNF-α	Tumour necrosis factor alpha
TnT	Troponin T
EPIC	European prospective investigation into cancer and
	nutrition
tPA	tissue plasminogen activator
TRF	Time-resolved fluorometry
UA	unstable angina
VCAM-1	Vascular cellular adhesion molecule-1
VLDL	Very low density lipoproteins
VSMCs	Vascular smooth muscle cells
WBCHO	Whole-blood choline
WHO	World health organization