

Ain Shams University
Faculty of Engineering
Electrical Power and Machines Department

Optimal Design of Controller for AVR Performance Enhancement

By

Ahmed Magdy Mosaad Hussien

B.Sc. Electrical Engineering, Ain Shams University, 2014

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science in Electrical Engineering

Ain Shams University
Faculty of Engineering
Electrical Power and Machines Department

Optimal Design of Controller for AVR Performance Enhancement

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science in Electrical Engineering

By

Ahmed Magdy Mosaad Hussien

B.Sc. Electrical Engineering, Ain Shams University, 2014

Supervised by

Prof. Dr. / Almoataz Youssef Abdelaziz Mohamed
Faculty of Engineering, Ain Shams University
Electrical power department

Dr. / Mahmoud Abdallah Attia Ibrahim
Faculty of Engineering, Ain Shams University
Electrical power department

Cairo 2017

Ain Shams University Faculty of Engineering Electrical Power and Machines Department

Optimal Design of Controller for AVR Performance Enhancement

A Thesis submitted in the Partial Fulfillment for the Requirement of the Degree of Master of Science of Electrical engineering

By

Ahmed Magdy Mosaad Hussien

B.Sc. Electrical Engineering, Ain Shams University, 2014

Examiners Committee

Title, Name & Affiliation	Signature
Prof. Dr. / Ali Mohamed Youssef Ali	
Faculty of Engineering, ,Assuit University	••••••
Prof. Dr./Hany Mohamed Hasanien Mohamed	
Faculty of Engineering, Ain Shams University	••••••
Prof. Dr. / Almoataz Youssef Abdelaziz	
Faculty of Engineering, Ain Shams University	

Date: 16 / 11 / 2017

Table of Content

List of Figures	V
List of Tables	VII
List of Abbreviations	VIII
Abstract	IX
Statement	X
Curriculum Vitae	ΧI
Acknowledgements	XII
CHAPTER 1	1
INTRODUCTION	1
1.1. Introduction	1
1.2. Goals of Optimal Design of Controller for AVR System	3
1.3. Thesis Objectives	4
1.4. Thesis Outlines	4
CHAPTER 2	5
LITERATURE REVIEW	5
2.1. Introduction	5
2.2. Literature Survey on Optimal Design of Controller for AVR Performance Enhancement	5

2.2.1. Genetic Algorithm (GA)	5
2.2.2. Tabu Search (TS)	6
2.2.3. Current search (CS)	7
2.2.4. BAT algorithm (BAT)	7
2.2.5. Particle Swarm Optimization (PSO)	8
2.2.6. Craziness based Particle Swarm Optimization (CRPSO)	10
2.2.7. Velocity Relaxed Particle Swarm Optimization (VRPSO)	10
2.2.8. Reinforcement Learning Automata (RLA)	10
2.2.9. Taguchi Combined Genetic Algorithm (TCGA)	11
2.2.10. Ant Colony Optimization (ACO)	11
2.2.11. Chaotic Optimization Algorithm	12
2.2.12. Anarchic Soceity Optimization (ASO)	13
2.2.13. Artifical Bee Colony (ABC)	13
2.2.14. Gravitational Search Algorithm (GSA)	14
2.2.15. Many Optimizing Liaisons (MOL)	15
2.2.16. Adaptive Particle Swarm Optimization (APSO)	16
2.2.17. Local Unimodal Sampling (LUS)	16
2.2.18. Harmony Search Algorithm (HSA)	17
2.2.19. Teaching Learned Based Optimization (TLBO)	17
2.2.20. Hybrid GA and PSO (HGAPSO)	18
2.2.21. Hybrid Genetic Algorithm and Bacterial Foraging (HGABF)	18
2.2.22. Hybrid PSO and GSA (HPSOGSA)	19
2.3. General Comments	22
CHAPTER 3	23
OPTIMIZIED CONTROLLER ON AVR SYSTEM	23
3.1. Introduction	23
3.2. AVR Design Model	23
3.3. Controller	25
3.3.1. Proportioanl Integeral Derivative (PID) Controller	25
3.3.2. Proportioanl Integeral Derivative acceleration(PIDA) Controller	26

3.4. Optimization Techniques	27
3.4.1. Harmony Search Algorithm (HSA)	28
3.4.2. Local Unimodal Sampling (LUS)	31
3.4.3. Teaching Learned Based Optimization (TLBO)	33
3.4.4. Whale Optimization Algorithm (WOA)	35
3.5. Objective Function	38
3.6. Final AVR System Model	39
CHAPTER 4	41
RESULTS AND ANALYSIS	41
4.1. Introduction	41
4.2. AVR System Model Without Controller	43
4.2.1. Transient response	43
4.2.2. Root locus and Eigen Values	44
4.2.3. Bode diagram	45
4.3. AVR System Model Using PID Controller	45
4.3.1. Transient response	46
4.3.2. Root locus and Eigen Values	49
4.3.3. Bode diagram	52
4.3.4. Summary on AVR system using PID controller	53
4.4. AVR System Model Using PIDA Controller	53
4.4.1. Transient response	54
4.4.2. Root locus and Eigen Values	57
4.4.3. Bode diagram	61
4.4.4. Summary on AVR system using PIDA controller	62
4.5. Salast the Rost Controller and Rost Ontimization Technique	62

4.6. Robustness Analysis	64
4.6.1. Robustness analysis on TLBO-PIDA	64
4.6.2. Robustness analysis on WOA-PIDA	68
CHAPTER 5	72
CONCLUSIONS AND FUTURE WORK	72
5.1. Conculusions	72
5.2. Future Work	73
References	74

List of Figures

Figure 1.1 AVR system in synchronous generator	1
Figure 1.2 Transient response specification	2
Figure 2.1 Genetic Algorthim	5
Figure 2.2 Tabu Search	6
Figure 2.3 BAT algorthim	8
Figure 2.4 Particle Swarm Optimization	9
Figure 2.5 Ant Colony Optimization	11
Figure 2.6 Artificial Bee Colony	13
Figure 2.7 Gravitational Search Algorithm	14
Figure 2.8 Many Optimization liaisons	15
Figure 3.1 AVR system model	24
Figure 3.2AVR system model using PID controller	26
Figure 3.3 AVR system model using PIDA controller	27
Figure 3.4 AVR system optimizied for controller tuning	28
Figure 3.5 Flow chart of HSA	30
Figure 3.6 Flow chart of LUS	32
Figure 3.7 Flow chart of TLBO	34
Figure 3.8 Flow chart of WOA	37
Figure 3.9 AVR system model using objective function and optimized	
to tune the controller	39
Figure 3.10 Flow chart methodology	40
Figure 4.1AVR system model with definite components parameters	42
Figure 4.2 Terminal voltage of AVR system without controller	43
Figure 4.3 Root locus of AVR system without Controller	44
Figure 4.4 Bode diagram of AVR system model without controller	45
Figure 4.5Terminal voltage of the four techniques using PID and with r	10
controller	47
Figure 4.6Terminal voltage of different optimization techniques	
using PID controller	48
Figure 4.7 Root locus of HSA-PID controller	49
Figure 4.8Root locus of LUS-PID controller	50
Figure 4.9Root locus of TLBO-PID controller	50
Figure 4.10Root locus of WOA-PID controller	51

52
55
57
8
8
59
59
51
53
53
)
54
О
55
o
55
0
66
)
58
)
58
)
59
)
59

List of Tables

Table 2-1 Comparison between Optimization Techniques	20
Table 4-1 AVR system components parameters	41
Table 4-2 Poles and damping ratio of AVR system without controller	44
Table 4-3 Margins and bandwidth in AVR system without controller	45
Table 4-4 Four optimization techniques in AVR system	
using PID controller	47
Table 4-5 Terminal voltage of different optimization techniques	
using PID controller	48
Table 4-6 Poles and damping ratio of optimization techniques	
using PID controller	51
Table 4-7 Margins and bandwidth of optimization techniques	
using PID controller	53
Table 4-8 Four optimization techniques using PIDA controller	
in AVR system	55
Table 4-9 Comparison with other optimization techniques	
using PIDA controller	56
Table 4-10 Pole and damping ratio of optimization techniques	
using PIDA controller	60
Table 4-11 Margins and bandwidth of optimization techniques	
using PIDA controller	62
Table 4-12 Dynamic response specification on variable time constants	
of AVR system (TLBO)	66
Table 4-13 Deviation and percentage deviation of AVR system	
using TLBO-PIDA	67
Table 4-14Dynamic response specification on variable time constants	
of AVR system (WOA)	70
Table 4-15Deviation and percentage deviation of AVR system	
using WOA-PIDA	71

List of Abbreviations

- ABC: Artificial Bee Colony
- ACO: Ant Colony Optimization
- APSO: Adaptive Particle Swarm Optimization
- AVR: Automatic Voltage Regulator
- BAT: Bat Search
- CS: Current Search
- CRPSO: Craziness based Particle Swarm Optimization
- DE: Differential Evolutionary
- GA:Genetic Algorithm
- GSA: Gravitational Search Algorithm
- HSA:Harmony Search Algorithm
- LUS: Local Unimodal Sampling
- MOL: Many Optimizing Liaisons
- PID: Proportional-Integral-Derivative
- PIDA: Proportional-Integral-Derivative-Acceleration
- PSO:Particle Swarm Optimization
- RLA: Reinforcement Learning Automata
- TS: Tabu Search
- TCGA:Taguchi Combined Genetic Algorithm
- TLBO: Teaching Learned Based Optimization
- VRPSO: Velocity Relaxed Particle Swarm Optimization
- WOA: Whale Optimization Algorithm

Abstract

Power system stability and power quality are improved by excitation control of synchronous generator. Automatic Voltage Regulator (AVR) system is an important device to regulate synchronous generator terminal voltageby control of excitation. A controller is recommended to improve stability and get fast response so Proportional-Integral-Derivative (PID) and Proportional-Integral-Derivative-Acceleration (PIDA) controllers are used. Harmony Search Algorithm (HSA), Local Unimodal Sampling (LUS), Teaching Learned Based Optimization (TLBO) and Whale Optimization Algorithm (WOA) are the optimization techniques used to tune each controller parameters. Integrated Square Error (ISE) is used as an objective function to minimize error voltage for better stability and response. Transient response, Root locus and Bode diagram are calculated for each controller using the four optimization techniques. The results are compared with other optimization techniques to find out the best response and stability for an AVR system. The results show also which controller is better. Robustness analysis is made on the best system to check terminal voltage response with respect to load variation to ensure that this system can be applied for the AVR of synchronous generator in Power system.

Keywords: Automatic Voltage regulator, Controller, Optimization techniques, Objective function

Statement

This thesis is submitted to AinShamsUniversity for the degree of Master of Science in Electrical Engineering.

The work included in this thesis was carried out by the author. No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name: A	med Magdy Mosa	aad
Signature:		

Curriculum vitae

Personal Information

Name : Ahmed Magdy Mosaad Hussien;

Gender : Male;Country of Nationality : Egypt;

Date of BirthMilitary Service StatusExempted;

Education

FirstUniversity Degree : B.Sc. Electrical Engineering;

University : AinShamsUniversity, Cairo, Egypt;

Graduation Date : June, 2014;

Graduation Project : Distribution project for a petroleum field;

Project grade : Distinction;

Cumulative Grade/ Rank / : Distinction with honour / 4th / 89.64 %;

Current Job

Job Title : Electrical engineer;

Employer : Khalda petroleum company, Egypt;

Contact Information

Address : 57 Abd Al Hakim Al Refaee Street, Nasr

City, Cairo, Egypt;

■ **Mobile** : 01011472205;

■ E-Mail : Ahmed 1 6 1992@hotmail.com

Acknowledgements

I am grateful for the help of my supervisors Prof. Dr. Al-Moataz Youssef and Dr. Mahmoud Abdallah for their help in my research. Finally many thanks to my family for their support.