AIR LEAK SYNDROMES IN MECHANICALLY VENTILATED NEONATES AT ABOU EL RISH HOSPITAL: TWO YEARS STUDY

Thesis

Submitted for fulfillment of master degree in

Pediatric Medicine

Presented by

Yasser Kotb Ahmed Hafez M.B.Bch.

Under supervision of

Dr. Heba Hany Abou Hussein

Assistant Professor of pediatric Medicine Faculty of Medicine - Cairo University

Dr. Khalil Abdel Khalek Mohamed Ahmed

Lecturer of Pediatric Medicine
Faculty of Medicine - Cairo University

Dr. Ahmed Mohamed Wafaie

Lecturer of Radiodiagnosis

Faculty of Medicine - Cairo University

Faculty of Medicine
Cairo University
2009

ACKNOWLEDGEMENT

First of all, thanks to *Allah* the most merciful for guiding me through and giving me strength to complete this work the way it is.

It is a pleasure to express my deepest thanks and profound respect to my honored professor, *Dr. Heba Hany Abou Hussein*, Assistant Professor of Pediatrics, Faculty of Medicine, Cairo University, for her continuous encouragement and valuable supervision and guidance throughout this work. It has been an honor and a privilege to work under her generous supervision.

Also, I wish to express my deep gratitude to *Dr. Khalil Abdel Khalek Mohamed Ahmed*, Lecturer of Pediatrics, Faculty of Medicine, Cairo University, for his kind support, help, careful supervision and his continuous guidance.

I am also deeply grateful and would like to express my sincere thanks and gratitude to *Dr. Ahmed Mohamed Wafaie*, Lecturer of Radiodiagnosis, Faculty of Medicine, Cairo University, for his great help and support.

My deepest gratitude to *Dr. Ziad Mohy Eldin*, Head of Neonatology Department in Ahmed Maher Teaching Hospital, for his great help, teaching and continuous support.

No words could adequately express my deep appreciation to my family, especially my mother and my wife for their continuous support and guidance. I shall remain indebted to them all my life.

ABSTRACT

Mechanical ventilation is an invasive life support procedure with many effects on the cardiopulmonary system.

Ventilator injury and oxygen toxicity are thought to be important factors in the pathogenesis of chronic pulmonary disease.

Assisted ventilation represents the hallmark of neonatal intensive care. Improvements in devices, the appearance of new techniques, better support system, the development of exogenous surfactant, and other pharmacological agents all have contributed to improving weight-specific survival rates for infants with neonatal respiratory failure.

The aim of this study was to determine the incidence of Air leak syndromes of mechanically ventilated neonates as regards morbidity & mortality in Neonatal Intensive Care Unit, Children's Hospital-Cairo University during the years 2007-2008, and to correlate such outcome with gestational age, birth weight, indications and durations of mechanical ventilation.

In this study neonates receiving mechanical ventilation (MV) accounted for (633 out of 3321) 19.06% of admissions, of whom (353 out of 633) 55.8% were males and (280 out of 633) 44.2% were females, outcome of mechanically ventilated neonates was (277 out of 633) 43.76% discharged without any sequelae while (26 out of 633) 4.11% developed PAL (of them 6 (23.08%) discharged while 20 (76.92%) died), three point five percent (22 out of 633) developed BPD (of them 11 (50%) discharged while 11 (50%) died) and (308 out of 633) 48.66% died not due to PAL or BPD. Twenty six point one percent of cases (165 out of 633) were managed with NCPAP alone while 45.8% (290 out of 633) required SIMV and 28.1% (178 out of 633) required combined NCPAP then SIMV. Mean duration of hospital stay was ranging between 1 – 58 days with a mean of 9.21 ± 8.04 days.

From this study, we concluded that, the poor outcome of mechanically ventilated patients is still a major problem in our community.

Recognition and prevention of causes of airway injury can help to ensure optimal outcomes for the critically ill neonate.

Key words: Mechanical ventilation-Neonatal intensive care unit.

CONTENTS

• List of tables	I – II
• List of figures	III - IV
• List of abbreviations	V - VII
• Introduction	1 – 2
• Aim of Work	3
• Review of literature	
Chapter 1: Lung Development	4 – 10
Chapter 2: Assessment of Pulmonary Function in Neonates	11 – 17
Chapter 3: Assisted Ventilation in Neonates	18 - 42
Chapter 4: Air Leak Syndromes and Bronchopulmonary Dysplasia	43 – 58
Subjects and Methods	59 – 60
Results and analysis of data	61 – 80
• Discussion	81 – 101
Conclusion and Recommendation	102 – 103
• Summary	104
• References	105 – 118
Arabic Summary	119 – 120
Appendix (Master Sheet)	121 – 149

List of Tables

Table	Title	Page
(1)	Advantages and Adverse Effects of Various Setting of Positive End-Expiratory Pressure.	26
(2)	Neonatal Mechanical Ventilatory Rates.	28
(3)	Inspiratory to Expiratory Ratio in Neonatal Mechanical Ventilation.	29
(4)	Flow Rate Adjustment in Neonatal Mechanical Ventilation.	30
(5)	Wave Forms in Neonatal Mechanical Ventilation.	31
(6)	Distinguishing Features of Volume Controlled and Pressure Limited Ventilation.	34
(7)	Complications of Mechanical Ventilation.	41
(8)	Etiological Factors in Chronic Lung Disease.	52
(9)	Demographic Data Among Studied Group at NTCU.	61
(10)	Criteria of 1 st Blood Gases Sample Taken From Mechanically Ventilated Neonates in The Studied Group.	61
(11)	Clinical Diagnosis on Admission Among The Studied Group.	62
(12)	Risk Factors on Admission Among The Studied Group.	62
(13)	Chest x ray Findings in The Studied Groups at The Time of Admission.	63
(14)	Average Ventilator Settings in The Studied Group.	64
(15)	Outcome of Ventilated Neonates in The Studied Group.	65
(16)	Correlation Between Gestational Age and Outcome in The Studied Group.	66
(17)	Correlation Between Birth Weight and Outcome in The Studied Group.	66
(18)	Correlation Between Mode of Ventilation and Outcome in The Studied Group.	67
(19)	PAL Among The Studied Group.	68
(20)	Chest x-ray and Chest Tube Insertion at The Time of Diagnosis of PAL in The Studied Group.	70

(21)	Clinical Diagnosis in Ventilated Neonates Having PAL.	71
(22)	Relation Between Birth Weight, Duration of Ventilation and Duration of Hospital Stay with The Incidence of PAL.	72
(23)	Criteria of Blood Gases Sample Withdrawn from Mechanically Ventilated Neonates at The Time of PAL.	72
(24)	Average Ventilator Settings and PAL.	73
(25)	BPD Among The Studied Group.	74
(26)	Clinical Diagnosis in Ventilated Neonates Having BPD.	75
(27)	Relation Between Birth Weight, Duration of Ventilation and Duration of Hospital Stay with The Incidence of BPD.	76
(28)	Average Ventilator Settings and BPD.	77
(29)	Relation Between Duration of Ventilation and Outcome in the Studied Group.	78

List of Figures

Figure	Title	Page
(1)	Embryology of the lung.	4
(2)	Tidal flow volume loop from a normal term neonate and a preterm neonate with high expiratory resistance.	12
(3)	Flow volume loops illustrating different types of flow limitation.	12
(4)	Comparison of the pressure volume curve of a normal infant with that of a newborn with respiratory distress syndrome.	14
(5)	Algorithm demonstrating approach to the ventilated infant with sudden acute deterioration.	36
(6)	Pulmonary interstitial emphysema (PIE).	43
(7)	Supine chest radiograph demonstrates a large right sided pneumothorax.	44
(8)	Needle aspiration of pneumothorax.	45
(9)	Pneumopericardium in ventilated neonates.	46
(10)	Pneumomediastinum in ventilated neonates.	48
(11)	Pneumoperitonium in ventilated neonates.	48
(12)	Bronchopulmonary dysplasia (BPD) in ventilated neonates.	50
(13)	Percentage of ventilated patients in Neonatal Intensive Care Unit during the years 2007-2008.	60
(14)	Gestational age among studied group at NICU.	60
(15)	Type of ventilation in the studied group.	63
(16)	Outcome of ventilated neonates in the studied group.	65
(17)	Distribution of gestational age among cases with PAL.	69
(18)	Mode of ventilation among cases with PAL.	69
(19)	Outcome among cases with PAL.	70
(20)	Mode of ventilation among cases with BPD.	73

(21)	Duration of ventilation (days) in relation to BPD.	76
(22)	Duration of hospital stay (days) in relation to BPD.	77

List of Abbreviation

ABG	Arterial Blood Gases
A/C	Assist/Control
BPD	Bronchopulmonary Dysplasia
b.p.m	Breath per minute
C	Compliance
CBF	Cerebral Blood Flow
CHD	Congenital Heart Disease
CLD	Chronic Lung Disease
CNS	Central Nervous System
CPAP	Continuous Positive Airway Pressure
CSF	Cerebrospinal Fluid
CT	Computerized Tomography
CDS	Cranial Ultrasound
AP	Mean Pressure Difference
ETT	Endotracheal Tube
FiO ₂	Fractional Concentration Of Oxygen In Inspired Gas
FRC	Functional Residual Capacity
GA	Gestational Age
GIT	Gastrointestinal Tract
GMH	Germinal Matrix Hemorrhage
HFJV	High Frequency Jet Ventilation
HFOV	High Frequency Oscillatory Ventilation
HFPPV	High Frequency Positive Pressure Ventilation

HFV	High Frequency Ventilation
I/E ratio	Inspiratory To Expiratory ratio
IMV	Intermittent Mandatory Ventilation
IPPV	Intermittent Positive Pressure Ventilation
IVH	Intraventircular Hemorrhage
Kt	Time Constant
L	Length Of The Airway
MAP	Mean Airway Pressure
MAS	Meconium Aspiration Syndrome
MV	Mechanical Ventilation
NCPAP	Nasal Continuous Positive Airway Pressure
NICU	Neonatal Intensive Care Unit
P	Intra Alveolar Pressure
PaCO ₂	Partial Pressure of Arterial Carbon Dioxide
PAL	Pulmonary Air Leak
PaO ₂	Partial Pressure of Arterial Oxygen
PDA	Patent Ductus Arteriosus
PEEP	Positive End Expiratory Pressure
pН	Minus Log Of Hydrogen Ion Concentration
РНН	Post Hemorrhagic Hydrocephalus
Pi	Inspiratory Pressure
PIE	Pulmonary Interstitial Emphysema
PIP	Peak Inspiratory Pressure
PPHN	Persistent Pulmonary Hypertension
PPV	Positive Pressure Ventilation
PR	Driving Pressure
PSV	Pressure Support Ventilation
PT	Preterm

PVHI	Periventircular Hemorrhagic Infarction
PVL	Periventircular Leukomalacia
R	Resistance
r	Alveolar Radius
RD	Respiratory Distress
RDS	Respiratory Distress Syndrome
RLF	Retrolental Fibroplasia
ROP	Retinopathy Of Prematurity
RSV	Respiratory Syncytial Virus
SatO ₂	Oxygen Saturation
SIMV	Synchronized Intermittent Mandatory Ventilation
st	Surface Tension
T_{E}	Expiratory Time
T_{I}	Inspiratory Time
V	Ventilation
V/Q	Ventilation/Perfusion
VILI	Ventilation Induced Lung Injury
VLBW	Very Low Birth Weight
$\mathbf{V}_{\mathbf{T}}$	Tidal Volume
η	Viscosity

INTRODUCTION

Mechanical ventilation is an invasive life support procedure with many effects on the cardiopulmonary system (*Eichenwald*, 2008).

Ventilation due to atelectasis, surfactant deficiency, pulmonary hemorrhage, or retained fetal lung fluids can increase transpulmonary pressure. In turn this leads to alveolar over distention and rupture. Similarly, aspiration of blood, amniotic fluid, or meconium can facilitate alveolar over distention by a ball-valve mechanism (*Venkatesh*, 2008).

There are many pulmonary and systemic complications of mechanical ventilation. Lung injury may result from positive pressure (barotrauma), oxygen toxicity or excessive volume changes in lung, or volutrauma, which may be manifested acutely as pulmonary air leak (*Pinhu et al.*, 2003).

Infants with respiratory distress may need only supplemental oxygen, whereas those with respiratory failure and apnea require mechanical ventilatory support. Mechanical ventilatory support offers great benefits but also incurs significant risks. The decision to initiate mechanical ventilation is complex. Because mechanical ventilation may result in serious complications, the decision to intubate and ventilate should not be taken lightly (*Gomella*, 2004).

Pulmonary air leaks (PAL), especially pneumothorax, is a potentially severe complication of pulmonary disease in newborn infants. It is often related to therapeutic procedures such as resuscitation and mechanical ventilation (*Meberg et al.*, 2007).

In the presence of pulmonary disease, positive pressure ventilation increases the risk of air leak. The high airway pressure required to

١

achieve adequate oxygenation and ventilation in infants with poor pulmonary compliance (e.g. pulmonary hypoplasia, Respiratory distress syndrome (RDS), inflammation, pulmonary edema) further increases this risk. Excessive transpulmonary pressure can occur when ventilators pressures are not decreased as pulmonary compliance improves. This situation sometimes occurs with infants with RDS who improve rapidly after surfactant treatment. Mechanically ventilated preterm infants who make expiratory efforts against ventilators breaths are also at increased risk of pneumothorax (*Venkatesh*, 2008).

Direct trauma to the airways can also cause air leak. Laryngoscope, endotracheal tubes, suction catheters and malpositioned feeding tubes can damage the lining of the airways and provide a portal of air entry (*Venkatesh*, 2008).

Air leak occurs more frequently in males than in females and in term and post term infants than in premature ones. The incidences is increased in infants with lung disease such as meconium aspiration and RDS; in those who have had vigorous resuscitation or are receiving assisted ventilation, especially if high inspiratory pressure and/or excessive end-expiratory pressure is used (*Kliegman et al.*, 2007).

AIM OF THE WORK

Evaluation of the incidence, risk factors, management, complications, and outcomes of air leak syndromes in mechanically ventilated neonates in Children's Hospital - Cairo University, Neonatal Intensive Care Unite (NICU).