SEGMENTAL TRUNK AND HIP JOINT MOTION ANALYSIS DURING SIT-TO-STAND TASK IN STROKE PATIENTS

Thesis Submitted in Partial Fulfillment for the Requirement of Master Degree in Physical Therapy

By NAGWA IBRAHIM MOHAMMED REHAB

B.Sc., in Physical Therapy, Cairo University (2003)
Department of Physical Therapy for Neuromuscular
Disorder and Its surgery

Supervisors

Prof. Dr. Abdulaleem Abdulfattah Atteya

Professor in Physical Therapy Department for Neuromuscular Disorder and Its surgery. Faculty of Physical Therapy, Cairo University.

Dr. Nevein Mohammed Mohammed Gharib

Lecturer in Physical Therapy Department for Neuromuscular Disorder and Its surgery. Faculty of Physical Therapy, Cairo University.

Dr. Nirmeen Adel Abdel-Ghaffar Kishk

Lecturer in Neurology Department.
Faculty of Medicine,
Cairo University.

Faculty of Physical Therapy Cairo University 2009 Segmental trunk and hip joint motion analysis during sit –to-stand task in stroke patients / Nagwa Ibrahim Mohammed Rehab; Supervisors Prof. Dr/ Abdulaleem Abdulfattah Atteya, Lecturer/ Nevein Mohammad Gharib, Lecturer/ Nirmeen Adel Abdel-Gaffar.- Physical Therapy Department for Neuromuscular Disorder and its Surgery- Faculty of Physical Therapy – Cairo University, Master Thesis, 2009, in 162 various leaves.

ABSTRACT

The purposes of this study were to evaluate the segmental trunk (including thoracic and lumbar spine) and hip joint movements during sit-to-stand task, and to assess balance in both stroke patients and healthy normal subjects. Thirty stroke patients and ten normal subjects participated in this study. Patients were divided into two equal groups according to the degree of spasticity of the affected lower limb measured by Modified Ashworth Scale. All subjects were assessed for balance by Berg balance scale and for the range of motion of thoracic, lumbar spine and hip joint by three- dimensional motion analysis system during sit-to-stand task. The results showed significant differences in balance score and in thoracic, lumbar spine and hip joint range of motion (during the two phases of sit-to-stand movement except the second phase for the hip joint) among the three groups. It was concluded that stroke patients had altered pattern of movements of thoracic, lumbar spine and hip joint during sit-to-stand task that appear in the form of increasing thoracic, lumbar spine and hip joint flexion during pre buttock lift-off phase and a longer sit-to-stand duration as compared to normal subjects.

Key words: stroke. sit-to-stand. segmental trunk. hip. three-dimensional motion analysis. balance.

ACKNOWLEDGMENT

First and above all, I would like to thank God who provided me with patience and graces that we could never able to count.

No words could ever express my most sincere; heart felt appreciation and deep thanks to **Prof. Dr. Abdulaleem Abdulfattah Atteya**, Professor in Physical Therapy Department for Neuromuscular Disorder and Its surgery, Faculty of Physical Therapy- Cairo University, for his generous supervision, valuable instruction, constant encouragement, creative ideas and constructive criticism.

I would like to express my sincere gratitude and thanks to **Dr. Nevein Mohammed Mohammed Gharib,** Lecturer in Physical Therapy Department for Neuromuscular Disorder and Its surgery for her patience and encouragement during reviewing this work. She gave me a lot of her time and effort to accomplish this work. Her comments and guidance were very beneficial for me.

I am truly grateful for **Dr. Nirmeen Adel Abdel-Gaffar,** Lecturer of Neurology, Faculty of Medicine-Cairo University for her sincere help, beneficial remarks and valuable advises throughout this work.

Sincere and deep thanks to **Dr. Moussa Abd El-Fattah Sharaf,** Lecturer in Physical Therapy Department for Neuromuscular Disorder and Its surgery, Faculty of Physical Therapy-Cairo University for his creative ideas and valuable advises.

My special appreciation and sincere thanks to **Dr. Dalia Mohamed,** Lecturer in Physical Therapy for Basic Science Department, Faculty of Physical Therapy- Cairo University for her kind help and important role in regulating and facilitating the practical part of this work.

I would like to extend my sincere appreciation to **Wanees Mohamed EL-Amir**, Assistant Lecturer and **Mohammed Sharaf**, Demonestrator in Physical Therapy Department for Neuromuscular Disorder and Its surgery, Faculty of physical therapy-,

It gives me great pleasure to acknowledge all my patients and volunteer subjects for their kind and active participation in this work.

CONTENTS

CH	APTER No.	Page
I:	INTRODUCTION	1
	Statement of the problem	3
	Purpose of the study	3
	Significance of the study	4
	Hypothesis	4
	Delimitations	5
	Limitation	6
	Basic assumptions	6
	Definitions of terms	7
	Operational definitions	8
II:	REVIEW OF LITERATURE	9
	(A) Stroke	9
	(B) Factors affecting functional outcome and prognosis of stroke patients	10
	(C) Biomechanical principles of sit-to-stand movement in	15
	normal subjects	
	a- Phases of sit-to-stand movement	16
	b- Mechanical requirement for standing up	20
	c- Movement of the body parts during sit-to-stand	22
	transfer	
	1. Movement of the trunk	22
	2. Movement of the hip joint	23
	3. Movement of the knee joint	23
	4. Movement of the ankle joint	25
	d- Spine and hip joint motion interaction during sit-to-	26
	stand movement	
	e- Determinants of sit-to-stand movement	27
	f- Muscle action during sit-to-stand movement	40
	D) Sit-to-stand movement in stroke patients	44
()	E) Biomechanical consideration of balance in normal subjects	49
••••		
(.	F) Balance during body transport in normal subjects	51
	1 - Balance during sit-to-stand movement	51
	2- Balance during standing	52 54
(0	3 - Trunk control in normal subjects	54 55

CHAPTER No.	Page
(H) Biomechanical consideration of balance in stroke patients	57
(I) Balance during body transport in stroke patients	58
1-Balance disturbance in stroke patients during sit-to- stand movement	58
2-Balance disturbance in stroke patients during	59
standing	
3 - Disturbance of trunk control in stroke patients	60
(J) Factors affecting lumbar spine range of motion and	62
flexibility	
(K) Instrumentation for measuring lumbar-hip motion	64
CHAPTER III: SUBJECTS, MATERIALS AND	65
METHODS	
(A)Subject Selection	65
(B) Instrumentations	67
(C) Procedures	73
(D) Methods of statistical analysis	83
(2) 1.120.110 000 01 01.00.120.120.120.120.120.110.110.110.11	
CHAPTER IV: RESULTS	85
CHAPTER V: DISCUSSION	112
SUMMARY	131
CONCLUSION	134
RECOMMENDATIONS	135
REFERENCES	136
APPENDICES	130
ARARIC SUMMARY	

LIST OF TABLES

Table No.	Page
1 Diagnosis and clinical description of the patients in mildly spastic stroke patients	86
2 Diagnosis and clinical description of the patients in moderately spastic stroke patients	87
3 The characteristics of the normal subjects	88
4 Comparison between general characteristics among mildly, moderately spastic stroke patients and normal subjects	89
5 Frequency distribution of the side of clinical involvement and type of lesion in mildly and moderately spastic stroke patients	89
6 Comparison of the mean values of the Berg balance scale score among mildly, moderately spastic stroke patients and normal subjects	91
7 Comparison between mildly and moderately spastic patients, mildly spastic patients and normal subjects, and between moderately spastic stroke patients and normal subjects mean values of Berg balance scale score	92
8 Comparison of the mean values of the sit-to-stand duration among mildly, moderately spastic stroke patients and normal subjects during sit-to-stand movement	93
9 Comparison between mildly and moderately spastic patients, mildly spastic patients and normal subjects, and between moderately spastic stroke patients and normal subjects mean values of the sit-to-stand duration	94
10 Comparison between the left and right sided patients regarding the mean values of sit-to-stand duration for mildly and moderately spastic stroke patients	95
11 Comparison between the hemorrhagic and ischemic stroke patients regarding the mean values of sit-t o-stand duration for both mildly and moderately spastic stroke patients	97
12 Correlation between Berg balance scale score and sit-to-stand duration for mildly, moderately spastic stroke patients and normal subjects	98

1	13 Comparison of the mean values of percentage of buttock-lift off from the overall sit- to-stand duration among mildly, moderately spastic stroke patients and normal subjects during sit-to-stand movement	100
1	Comparison between mildly and moderately spastic patients, mildly spastic patients and normal subjects, and between moderately spastic stroke patients and normal subjects mean values of the percentage of buttock lift-off from the overall sit-to- stand duration	101
	15 Comparison of the mean values of the range of motion of thoracic spine among mildly, moderately spastic stroke patients and normal subjects during sit-to-stand movement	104
1	16 Comparison between mildly and moderately spastic patients, mildly spastic patients and normal subjects, and between moderately spastic stroke patients and normal subjects mean values of the thoracic spine during pre and post buttock lift-off phase	104
1	17 Comparison of the mean values of the lumbar spine range of motion among mildly, moderately spastic stroke patients and normal subjects during pre and post buttock lift- off phases	107
1	18 Comparison between mildly and moderately spastic patients, mildly spastic patients and normal subjects, and between moderately spastic stroke patients and normal subjects mean values of the lumbar spine range of motion during pre and post buttock lift-off phases	107
1	19 Comparison of the mean values of the hip joint range of motion among mildly, moderately spastic stroke patients and normal subjects during pre and post buttock lift-off phases	110
2	20 Comparison between mildly and moderately spastic patients, mildly spastic patients and normal subjects, and between moderately spastic stroke patients and normal subjects mean values of the hip joint range of motion during pre and post buttock lift-off phases	110

LIST OF FIGURES

Figure No.	
1 Different phases of sit-to-stand movement	
2 Phases of sit-to-stand movement	
3 The direction of segmental movement during sit-to-stand	
4 Movement of the shoulder, hip and knee during sit-to-st movement	
5 Range of motion of the hip joint during sit-to-stand movement	
6 Range of motion of the knee joint during sit-to-stand movemen	nt
7 Range of motion of the ankle joint during sit-to-stand movement	ent
8 Preferred foot placement	
9 The three starting positions of the trunk	
10 Trajectory of the total body center of mass observed during four sit-to-stand tasks	
11 The stability of the pelvis	
12 Height and weight scale	
13 Universal goniometer	
14 The motion capture unit system overview	
15 The wand kit	
16 The markers shape	
17 Markers placement on the patient	
18 Armless adjustable height chair	
19 Anterior view of the normal subject with his arms folded acra his chest	
20 Diagram illustrating method of calculation of thoracic, lumband hip flexion- Extension angles	
21 Frequency distribution of the side of clinical involvement in mildly spastic stroke patients	
22 Frequency distribution of the side of clinical involvement in moderately spastic stroke patients	
23 Frequency distribution of the type of the lesion in mildly spas stroke patients	tic
24 Frequency distribution of the type of the lesion in moderate spastic stroke patients	•

Figure No.	Page
25 Comparison of the mean values of the Berg balance scale score among mildly, moderately spastic stroke patients and normal subjects	92
26 Comparison of the mean values of the sit-to-stand duration among mildly, moderately spastic stroke patients and normal subjects during sit-to-stand movement	94
27 Comparison between the left and right sided patients regarding the mean values of sit-to-stand duration for mildly and moderately spastic stroke patients	96
28 Comparison between the hemorrhagic and ischemic stroke patients regarding the mean values of sit-to-stand duration for both mildly and moderately spastic stroke patients	97
29 Correlation between Berg balance scale score and sit-to-stand duration in mildly spastic stroke patients	98
30 Correlation between Berg balance scale score and sit-to-stand duration in moderately spastic stroke patients	99
31 Correlation between Berg balance score and sit-to-stand duration in normal subjects	99
32 Comparison of the mean values of percentage of buttock lift-off from the overall sit- to-stand duration among mildly, moderately spastic stroke patients and normal subjects during sit-to-stand movement	101
33 Comparison of the mean values of the range of motion of thoracic spine among mildly, moderately spastic stroke patients and normal subjects during sit-to-stand movement during pre lift-off phase	105
34 Comparison of the mean values of the range of motion of thoracic spine among mildly, moderately spastic stroke patients and normal subjects during sit-to-stand movement during post lift-off phase	105
35 Comparison of the mean values of the lumbar spine range of motion among mildly, moderately spastic stroke patients and normal subjects during pre lift-off phase	108

Figure No.	Page
36 Comparison of the mean values of the lumbar spine range of motion among mildly, moderately spastic stroke patients and normal subjects during post lift-off phase	108
37Comparison of the mean values of the hip joint range of motion among mildly, moderately spastic stroke patients and normal subjects during pre lift-off phase	111
38 Comparison of the mean values of the hip joint range of motion among mildly, moderately spastic stroke patients and normal subjects during post lift-off phase	111

LIST OF ABBREVIATIONS

1/3 thigh: At junction of the proximal one-third with the distal two-

thirds of a line joining the apex of the greater trochanter

and midpoint of the lateral knee joint line.

2-D: Two dimensional.

3/4 thigh: At the junction of the proximal three quarters and distal one-

quarter of a straight line joining the apex of the greater trochanter

to the midpoint of the lateral knee joint line.

3-D: Three-dimensional.
ANOVA: Analysis of variance...

A-P: Antero-posterior.

ASIS: Anterior superior iliac spine.

BBS: Berg balance scale.BOS: Base of support.BMI: Body mass index.

C6: Sixth thoracic vertebra.C7: Seventh thoracic vertebra.

Cm: Centimeter.

COG: Centre of gravity.
COM: Centre of mass.
COP: Centre of pressure.

EMG: Electromyography.

FIM: Functional Independence Measures.

Fig.: Figure.

FSTS: Forward sit to stand.

GIa: Group Ia; mildly spastic stroke patients.

GIb: Group Ib; moderately spastic stroke patients.

GII: Group II; normal subjects.

GM: Gluteus medius

HAT: Head, arms and trunk.

ICC: Intra class correlation coefficient.

Kg: Kilogram.

Kg / m2: Kilogram per meter square.

L1 First lumbar vertebra. L4: Forth lumbar vertebra.

LO: Lift-off.

LSD: Least Significant difference.

Lt: Left.

m2: Meter square.

MAS: Modified Ashworth's Scale.

MCU: Motion capture unit.

M-L: Medio-lateral.

No.: Number.

NSTS: Normal STS.

PC: Personal computer.

PSIS: Posterior superior iliac spine.

QUA: Quadriceps. Q: Qualisys.

r: Pearson Correlation Coefficient.

ROM: Range of motion.

Rt: Right.

SD: Standard Deviation.

S2: Second sacral vertebra (the midpoint between the two

posterior superior iliac spines.

sec: Second.

SPSS: Satistical package for social science.

STS: Sit-to-stand.

SD: Standard deviation.
T1: First thoracic vertebra.
T4: Forth thoracic vertebra.
T10: Tenth thoracic vertebra.

TA: Tibialis anterior.
TFL: Tensor fascia lata.

yr: Year.

CHAPTER I INTRODUCTION

A cerebrovascular accident or stroke has been defined as the sudden onset of neurologic signs and symptoms resulting from a disturbance of blood supply to the brain. It was classified as either hemorrhagic or ischemic. Ischemic strokes can be subdivided into two major categories: those that result from thrombosis and those that result from an embolus, whereas hemorrhagic strokes including those that are caused by intracerebral hemorrhage, subarachnoid hemorrhage, and arteriovenous malformation (Martin and Kessler, 2007). Approximately, 70 percent of all cerebrovascular accidents are due to ischemia, 20 percent are due to hemorrhage, and the remaining ten percent have an unspecified origin (Reyson et al., 2001).

Rising from a chair is performed many times daily and is important prerequisites to the achievement of many functional goals (Chou et al., 2003), as well as, maintaining independence in everyday life (Eriks-rud and Bohannon, 2003). Inability to perform this essential activity may lead to dependence, institutionalization and even death in elderly subjects (Janssen et al., 2002). This task requires some skills as coordination between the trunk and lower limbs, muscle strength, equilibrium and stability and it is often considered into clinical evaluation scales of different pathologies (Galli et al., 2008). Following stroke, the ability to rise from a chair is reduced (Roy et al., 2007). The most common reason concerned with the difficulty of rising from a chair in stroke patients is mainly related to

difficulty in generating timing and sufficient force in the lower limb extensor muscles to propel the body mass vertically (**Carr and Shepherd, 1998**).

Although a seemingly simple task, sit-to-stand (STS) movement requires the coordinated interaction of linked body segments to transport effectively the body's centre of mass (COM) in a horizontal then vertical direction while maintaining balance over a small base of support, the feet. The basic kinematic include flexion of the trunk and hips to bring the COM forward, followed by bilateral extension of the lower limb joints and trunk extension to raise the body mass in a vertical direction over the feet (Roebroeck et al., 1994).

Trunk control requires coordinated interaction of the spine and hip and it is a prerequisite for independence in functional activities as STS transfer. Loss of trunk control is commonly observed in stroke patients. Impairment in trunk control may lead to increased risk of falls, visual dysfunction secondary to resultant head/neck malalignment, decreased independence in activities of daily living and decreased sitting and standing tolerance and balance (Gillen and Burkhardt, 1998).

Three dimensional (3-D) analysis system has been used as an accurate quantitative assessment of human movements in different degrees of freedom. It is as an objective method that can be used for studying the control and coordination of the trunk and lower extremity functions.

A major reason for the focus on trunk movement is that during the rehabilitation of people with neurological impairment, trunk alignment and