PLASMA ANGIOPOIETIN-1 LEVELS IN BEHCET DISEASE: ASSOCIATION WITH THE CLINICAL AND LABORATORY PARAMETERS

Thesis

Submitted for partial Fulfillment of the Master Dergree In Rheumatology and Rehabilitation

> Presented by Mohamed Mohamed Aly Sharaf MB.B.CH

> > Supervised by

Prof. Dr. Maather Mohamed Mahgoub

professor of Rheumatology and Rehabilitation Faculty of medicine-Cairo university

Dr. Iman Hamed Bassyouni

Assistant Professor of Rheumatology and Rehabilitation Faculty of medicine-Cairo university

Dr. Iman Ezzat Waly

Assistant professor of medical Microbiology and immunology. Faculty of medicine-Cairo university

Faculty of Medicine Cairo University 2013

ACKNOWLEDGEMENT

This work would have never been accomplished without the blessing and help of God, to whom I am extremely grateful.

I had the honor to accomplish my work under the supervision of Doctor Iman Hamed Bassyouni, Assistant Professor of Rheumatology and Rehabilitation, Faculty of Medicine, Cairo University. I am really indebted to her for her unlimited support, great patience, meticulous supervision and kind encouragement during this work.

I wish to express my sincere thanks and gratitude to Doctor **Iman Ezzat Waly** Assistant Professor of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University for her great help throughout this study.

I also wish to express my deep thanks to Doctor **Ayman Kamal El Garf,** Professor of Rheumatology and Rehabilitation, Faculty of Medicine, Cairo University for his valuable help and expert advice throughout this study.

Finally I would like to express my deep thanks to all staff members and colleagues in the Rheumatology and Rehabilitation department, Faculty of medicine, Cairo University for their help and support.

In the memory of Doctor **Maather Mohamed Mahgoub** I dedicate this work to her pure soul.

ABSTRACT

Objective

Behcet's Disease (BD) is a chronic multisystem inflammatory disorder of unclear etiology. Vascular inflammation, endothelial dysfunction and angiogenesis may be in part responsible for the pathogenesis of BD. The aim of the present study was to assess Angiopoietin-1 (Ang-1) concentrations as a recent angiogenic mediator in plasma of BD patients and to analyze its association with disease clinical features, laboratory parameters as well as disease activity.

Patients and Methods

The present study included 47 BD patients fulfilling the International Study Group criteria for the diagnosis of BD and 30 age and gender matched healthy controls. Demographic, clinical and serological data were prospectively assessed. Activity and severity of BD were also assessed. Plasma Ang-1 levels were measured using enzyme-linked immunosorbent assay (ELISA).

Results

The mean plasma level of Ang-1 in BD patients was significantly lower than healthy controls (p=0.005). Mean plasma Ang-1 level in patients with vascular affection was significantly lower than those without vascular affection (p=0.045). The mean plasma Ang-1 level was significantly higher in patients with CNS than

those without (p=0.040). There was no significant association between plasma

Ang-1 levels and other clinical manifestations nor disease activity or severity.

Patients who received cyclophosphamide showed a significant increase in plasma

Ang-1 level than those who didn't receive it (p=0.049).

Conclusion

Plasma Ang-1 levels were diminished in our BD patients especially in

patients with vascular involvement. Larger studies with further investigations of

the precise role of Ang-1 in the pathogenesis of BD are needed and might lead

to novel therapies for the clinical management of BD.

Key words Angiogenesis; Angiopoietin; Behcet's disease; Vasculitis

CONTENTS

	Page
List of tables	Ι
List of figures	II
List of abbreviations	III
Introduction & Aim of the work	1
Review of literature	4 - 104
Behcet Disease	4
Angiopoietins	61
Materials & Methods	105
Results	119
Discussion	142
Summary and Conclusion	152
References	155
Arabic summary	_

LIST OF TABLES

Table	Title	Page
Table (1)	ISG criteria for the diagnosis of Behcet disease	50
Table (2)	Important mediators of inflammatory Angiogenesis	74
Table (3)	Important inhibitors of inflammatory angiogenesis	75
Table (4)	Angiogenic and angiostatic factors in systemic sclerosis	98,99
Table (5)	BD severity score	111
Table (6)	General features of the disease	119
Table (7)	Clinical findings of studied population	122
Table (8)	Presenting feature at the onset of the disease	124
Table (9)	Treatment received by BD patients	126
Table (10)	Laboratory data of BD patients	127
Table (11)	Mean plasma Ang-1 levels in BD patients and healthy controls	128
Table (12)	Mean plasma Ang-1 levels and different clinical features in affected and unaffected patients	130
Table (13)	Correlation between plasma Ang-1 levels and different clinical features of BD patients	133
Table (14)	Plasma Ang-1 levels and disease activity	134
Table (15)	Plasma Ang-1 levels and severity grades	137
Table (16)	Correlation between Plasma Ang-1 and demographic data of BD patients	138
Table (17)	Correlation between plasma Ang-1 levels and laboratory features of BD patients	140
Table (18)	Plasma Ang-1 levels and medications	141

LIST OF FIGUERS

Table	Title	Page
Fig. (1)	Multiple aphthous ulcers on the labial mucosa.	35
Fig. (2)	Scrotal ulcer.	36
Fig. (3)	Multiple genital ulcers on the labia minor.	37
Fig. (4)	A schematic model of the angiopoietin-Tie2 ligand-receptor system.	63
Fig. (5)	Clinical Manifestations of BD patients (%).	123
Fig. (6)	Presenting Features at BD Disease onset.	125
Fig. (7)	Plasma Ang-1 levels in BD patients and healthy controls.	129
Fig. (8)	Plasma Ang-1 levels in BD patients with & without Vascular involvement.	131
Fig. (9)	Plasma Ang-1 levels in BD patients with & without neurological involvement.	132
Fig. (10)	Plasma Ang-1 levels in Active and Inactive BD patients.	135
Fig. (11)	Scatter Plot demonstrating correlation of Plasma Ang-1 levels with BD Severity Score.	136
Fig. (12)	Plasma Ang-1 levels in different grades of BD Severity	137
Fig. (13)	Scatter Plot demonstrating correlation of Plasma Ang-1 levels with ESR.	139

ABBREVIATIONS

ABI Ankle-Brachial Index

ABIN-2 A20 binding inhibitor of NFkB

ACL Anticardiolipin

AECA Anti-Endothelial Cell Antibodies

aFGF acidic Fibroblast Growth Factors

AICD Activation Induced Cell Death

ALT Alanine transaminase

ANA Antinuclear Antibody

ANCA Anti-Cytoplasm Antibodies of Neutrophils

Ang Angiopoietin

anti-dsDNA anti double stranded DNA

ARDS Acute Respiratory Distress Syndrome

ASCA Anti-Saccharomyces Cerevisiae Antibodies

AST Aspartate trasaminase.

BAL Bronchoalveolar lavage

BD Behcet disease

bFGF basic Fibroblast Growth Factors

C Complement

CABG Coronary Artery Bypass Grafting

cANCA Cytoplasmic Anti-Neutrophil Cytoplasmic Antibodies

CD Cluster of Diffrentiation

CLI Critical Limb Ischemia

CMV Cytomegalo Virus

COX Cyclooxygenase

CRP C-reactive protein

CSA Cyclosporine A

CSF Cerebral Spinal Fluid

CT Computerized Tomography

CTAP-III Connective Tissue Activating Protein-III

CTLA-4 Cytotoxic T lymphocyte Antigen 4

CXC, CC, CXC3 Chemokine Receptors

DMARDs Disease-Modifying Anti-Rheumatic Drugs

DNA Deoxyribonucleic acid

Dok Downstream of tyrosine kinases.

EBV Epstein Barr Virus

EC Endothelial cells

EGF Epidermal Growth Factor

ELISA Enzyme-Linked Immunosorbent Assay

ENA-78 Epithelial Neutrophil Activating protein-78

ENG Endoglin

ESR Erythrocyte Sedimentation Rate in the first hour

ET-1 Endothelin 1

EULAR European League Against Rheumatism

FGF Fibroblast Growth Factor

FK506 Fujimycin (Tacrolimus)

FMF Familial Mediterranean Fever

Fox Forkhead box

G20210A Prothrombin 20210 gene mutation

GC Glucocorticoids

G-CSF Granulocyte Colony-Stimulating Factor

GIT Gastrointestinal tract

GMCSF Granulocyte-Macrophage Colony-Stimulating Factor

Grow Growth related oncogene α

GWAS Genomewide association study

Hb Hemoglobin

HGF Hepatocyte Growth Factor

HIF-1, HIF-2 Hypoxia Inducible Factors 1 and 2

HLA Human leukocyte antigen

HSP Heat-Shock Proteins

HSV1 Herpes Simplex Virus 1

HUVECs Human Umbilical Vein Endothelial Cells

IC Intermittent Claudication

ICAM-2 Intercellular Adhesion Molecule-2

IgA Immunoglobulin A

IGF-I Insulin-like Growth Factor-I

IgG Immumoglobulin G

IgM Immunoglobulin M

IkB Inhibitor of NFkB

IL Interleukin

INFγ Gamma Interferon

IP-10 Interferon-γ-inducible Protein 10

IRF Interferon Regulatory Factor 1

ISG International Study Group

IUGR Intrauterine Growth Retardation

JAM Junctional Cell Adhesion Molecules

KD Kawasaki Disease

KGF Keratinocyte Growth Factor

MCP-1 Monocyte Chemattractant Protein 1

MDNCF Monocyte-Derived Neutrophil Chemotactic Factor

MEFV gene Mediterranean fever gene

MHC Major histocomptability complex

MIC-A, MIC-B MHC class I chain-related genes

MIF Macrophage migration Inhibitory Factor

Mig Monokine Induced by interferon-gamma

MMP-2 Matrix metalloproteinase-2

MMPs Matrix Metalloproteinases

MODS Multiple Organ Dysfunction Syndrome

MRI Magnetic Resonance Imaging

mRNA Messanger Ribonucleic Acid

MSCs Mesenchymal Stem Cells

MTHFR Methylenetetrahydrofolate reductase

MTX Methotrexate

MUC 18, Lewis/H Adhesion molecules

NBD Neuro Behcet Disease

NO Nitric Oxide

PAD Peripheral Arterial Disease

PAF Platelet Activating Factor

PAFR Platelet Activating Factor Receptor

PBMCs Peripheral Blood Mononuclear Cells

PDGF Platelet-Derived Growth Factor

PECAM-1 Platelet Endothelial Cell Adhesion Molecule-1

PF4 Platelet Factor 4

PGC-1 α Peroxisome-proliferator coactivator 1α pathway

PI3K phosphoinositide-3 kinase

PMA Phorbol12-Myristate-13-Acetate

PPAR peroxisome-proliferator activated receptor

PTX3 Pentraxin-3

RA Rheumatoid Arthritis

RNA Ribonucleic Acid

ROS Reactive Oxygen Species

RTKs Receptor for tyrosine kinases

S sangius Streptococcus sanguis

SAA Serum Amyloid A

SD Standard Deviation

SDF-1 Stromal Cell Derived factor-1

sEng Soluble Endoglin

SIRS Systemic Inflammatory Response Syndrome

SLE Systemic Lupus Erythematosus

SLEDAI Systemic Lupus Erythematosus Disease Activity Index

SNP Single Nucleotide Polymorphism

SS Systemic Sclerosis

TGF β Transforming Growth Factor β

Th T helper cells

TIMP Tissue Inhibitors of metalloproteinases

TLR Toll Like Receptor

TNFRSF1A Tumor Necrosis Factor Receptor Gene

TNFα Tumor Necrosis Factor α

TPA Tissue Plasminogen Activator

Tregs T Regulatory cells

TSP-1 Thrombospondin-1

VCAM-1 Vascular Cell Adhesion Molecule-1

VEGF Vascular Endothelial Growth Factor

VZV Varicella Zoster Virus

WBC's White Blood Cells

WG Wegner Granulomatosis

WPB Weibel-Palade Body

 α Vβ3 Adhesion receptor α Vβ3

γδ Tc Gamma Delta T cells

INTRODUCTION

Behcet's disease (BD) is a systemic vasculitis disorder of unknown etiology, characterized by relapsing episodes of oral aphthous ulcers, genital ulcers, skin lesions and ocular lesions.

The cause of BD is unknown. It is believed to be due to an autoimmune process triggered by an infectious or environmental agent (possibly local to a geographic region) in a genetically predisposed individual. Interaction of primed neutrophils with endothelial cells is considered a crucial event in the pathogenesis of severe endothelial lesions in BD vasculitis (*Mendes et al.*, 2009).

In this regard, the interaction between neutrophils and endothelial cells has been the subject of much study. Angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) are antagonistic ligands that bind to the extracellular domain of the Tie-2 receptor, which is almost exclusively expressed by endothelial cells (*Fiedler et al.*, 2003). The Ang-Tie ligand–receptor system was identified as the second class of vascular-specific receptor tyrosine kinases (RTKs). Angiopoietins and Tie-2 receptor control angiogenic remodeling in a context-dependent manner. Tie signaling is involved in multiple steps of the angiogenic remodeling process during development, including destabilization of existing vessels, endothelial cell migration, tube formation and the subsequent stabilization of newly formed tubes by mesenchymal cells. Beyond this critical role in blood vessel

development, recent studies suggest a wider role for angiopoietins in lymphangiogenesis and the development of the hematopoietic system, as well as a possible role in the regulation of certain non-endothelial cells. (*Eklund and olsen*, 2006).

In line with these data, significantly elevated Ang-2 concentrations and decreased Ang-1 concentrations has been detected in patients with Systemic lupus erythematosus (SLE) with active disease (*Kumpers et al., 2009*). Circulating Ang-2 has been elevated and closely correlates with disease activity and circulating endothelial cells numbers in ANCA associated vasculitis with renal involvement (*Kumpers b et al., 2009*). Recently, a preliminary study reported elevated Ang-1 in Korean BD Patients (*Choe et al., 2010*). But with this exception, no information is available on the role of Ang/Tie system in BD patients.