

Ain Shams University Faculty of Women's for Arts, Science and Education Chemistry Department

Synthesis and Characterization of Novel Surfactants Derived from Triazinan for Petroleum Applications

A Thesis

Submitted in Partial Fulfillment of the Requirements for Ph.D. Degree of Science in Organic Chemistry

Presented By

Amira El-Sayed El-Tabey El-Ghaly

(M.SC. in Organic Chemistry, 2008)

Supervised By

Prof. Dr. Nadia Gharib Kandile
Prof. of Applied Organic Chemistry
Faculty of Women
Ain Shams University

Prof. Dr. Ahmed Mohamed Al Sabagh
Prof. of Applied Chemistry
Egyptian Petroleum Research Institute

Dr. Notaila Mohamed Nasser
Ass. Prof. of Applied Chemistry
Egyptian Petroleum Research Institute

Ain Shams University Faculty of Women's for Arts, Science and Education Chemistry Department

Synthesis and Characterization of Novel Surfactants Derived from Triazinan for Petroleum Applications

By

Amira El-Sayed El-Tabey El-Ghaly

Thesis Supervisors	Thesis approved
Prof. Dr. Nadia G. Kandile	
Prof. Dr. Ahmed M. Al Sabagh	
Dr. Notaila Mohamed Nasser	

Head of Chemistry Department Dr. Suzan Hassan

جامعــة عين شمس كليـــة البنــات للعلوم والآداب والتربية قسم الكيمياء

تحضير وتوصيف مواد ذات نشاط سطحى مبتكرة مشتقه الترايزينان لإستخدامها في التطبيقات البتروليه

أميرة السيد الـ ماجستير ـ كيمياء عضوية ()

(كيمياء عضوية)

. / نادية غريب قنديل . / أستاذ الكيمياء العضوية التطبيقية

كلية البنات جامعة عين شمس

معهد بحوث البترول

ستاذ الكيمياء التطبيقية

/ تيلة محمد ناصر

كيمياء التطبيقية معهد بحوث البترول

جامعة عين شمس كلية البنات للاداب والعلوم والتربيه قسم الكيمياء

: أميره السيد التابعي الغالي

"تحضير وتوصيف مواد ذات نشاط سطحى مبتكرة و مشتقه من الترايزينان لإستخدامها في التطبيقات البتروليه

أستـــاذ الكيمياء العضوية - كلية البنات جامعة عين	ديل	. / نادية غريب قد
ــاذ الكيمي تطبيقية - معهد بحوث الـ		/.
كيمي - معهد بحوث الـ		/ نتيله محمد ناصر
اذ كيمياء التطبيقيه - معهد بحوث ال		1.
كيمياء العضويه جامعة عين شـمس		1.
ـــاذ الكيمي تطبيقية - معهــد بحوث الـ		1.
اذ الكيمياء العضوية - كلية البنات - جامعة عين شمس	ديل	. / نادية غريب قد
تاريخ البحث		
/ / تاريخ المنح / /		الدر اسات العليا
موافقة مجلس الكلية	الية	موافقة مجلس الك

Acknowledgment

ACKNOWLEDGEMENT

I am in a greatest thankful to ALLAH, The Most Merciful, The Most Gracious, by the grace of whom the progress and success of the present work.

It is my pleasure to express my deepest thanks to *Prof. Dr. Nadia Gharib Kandile*, Professor of Organic Chemistry, Chemistry Department, Faculty of Arts, Science and Education Ain Shams University, for her kind supervision, valuable discussions, encouragement, careful revision of the manuscript and help given throughout this work.

It is my pleasure to express my deep thanks, appreciation and gratitude to *Prof. Dr. Ahmed M. Al-Sabagh*, Professor of Applied Chemistry, Director of Petroleum Research Institute (EPRI), for suggesting the topic of investigation, direct supervision, careful revision of the manuscript and his kind help given throughout this work.

My deep thanks and appreciation to *Dr. Notila Mohamed Nasser*, Associate Professor of Applied Chemistry, Petroleum Research Institute (EPRI), for her support, kind help, co-operation and valuable discussion.

My special thanks and gratitude to *Dr. Marwa Rashad Mishrif*, Associate Professor of Applied Chemistry, Petroleum Research Institute, for her kind help, encouragement and valuable discussion.

My deep thanks to my family My Mother, My Mother Mona My Brothers, and My Sisters for supporting me in my life.

CONTENTS

List of Tables	S	I
List of Figure	es	IV
Aim of the W	ork	X
Summary		IX
Chapter I	Introduction	1
	1.1. Definition of Surfactant	1
	1.1.1. General Structural Features and Behavior of	
	Surfactants	1
	1.1.2. Characteristic Features of Surfactants	2
	1.1.3. Classification of Surfactants	2
	1.1.3.1. Ionic Surfactants	3
	1.1.3.2. Nonionic	4
	1.1.4. Micelle Formation	5
	1.2. Evaluation of the Surfactants as Corrosion	
	Inhibitors	6
	1.2.1. Definition of Corrosion	6
	1.2.2. Chemistry of Corrosion	7
	1.2.3. Types of Corrosion	9
	1.2.4. Forms of Corrosion	10
	1.2.5. Corrosion Protection	12
	1.2.5.1. Protective Coating	12
	1.2.5.2. Metals & Alloys	12
	1.2.5.3. Corrosion Inhibitors	13

	1.2.5.3.1. Classification of Inhibitors	13
	1.2.5.3.2. Structure of the Inhibitor	16
	1.2.6. Types of Adsorption	16
	1.2.6.1. Physical Adsorption	17
	1.2.6.2. Chemisorption	18
	1.3. Literature Survey on Surfactants as Corrosion	
	Inhibitors	20
	1.4. Evaluation of the Surfactants as Demulsifiers	27
	1.4.1. Chemical Composition of Crude Oil	27
	1.4.2. Petroleum Crude Oil Emulsions	29
	1.4.3. Emulsion Stability	29
	1.4.4. Demulsification	30
	1.4.4.1. Mechanism of Demulsification	31
	1.4.4.2. Flocculation	31
	I.4.4.3. Coalescence	31
	1.4.5. Methods of Demulsification	32
	1.4.5.1. Chemical Demulsification	33
	1.5. Literature Survey on Surfactants as Demulsifiers	36
Chapter II	Experimental	44
	2.1. Materials	44
	2.2. Methods	45
	2.2.1. Synthesis of 1, 3, 5-triethanolhexahydro-1, 3, 5-	
	triazine (Base Compound)	45
	2.2.2. Synthesis of Cationic Surfactants	45

2.2.3. Synthesis of Nonionic Surfactants	46
2.2.3.2. Synthesis of the Ethoxylated and Propylated	
of the 1,3,5-triethanolhexahydro1,3,5-triazine	46
2.2.3.3. Esterfication of the Ethoxylated Compounds	
with Oleic Acid	47
2.2. Elucidation of the Molecular Structure	48
2.2.1. Fourier Transform Infrared Spectroscopy	
(FTIR)	48
2.2.2. ¹ HNMR Spectroscopy	48
2.2.3. Gel Permeation Chromatography (GPC)	48
2.2.4. Determination of Partition Coefficient (Kp)	49
2.3. Evaluations Techniques	50
2.3.1. Surface Tension Measurement	50
2.3.2. Solutions	51
2.3.2.1. Hydrochloric acid solution	51
2.2.3.2. Inhibitor Solutions	51
2.3.3. Corrosion Inhibition Measurements	51
2.3.3.1. Weight Loss Measurements	51
2.3.3.2. Electrochemical Techniques	52
2.3.3.2.1. Potentiodynamic Polarization	52
2.3.3.2.2. Electrochemical Impedance Spectroscopy	
(EIS)	55
2.3.3.3. Scanning Electron Microscopy (SEM)	55
2.4. Demulsification Measurements	55

	2.4.1. Crude Oil Types	55
	2.4.2. Bottle Test	55
Chapter III	Results and Discussion	57
	3.1. Confirming the Chemical Structure of the	
	Prepared Compounds	58
	3.1.1. Synthesis of 1,3,5-tris(ethanol)hexahydro-s-	
	triazine (Base Compound)	58
	3.1.2. Synthesis of Cationic Quaternary Ammonium	
	Fatty Alkyl Bromide Surfactants	59
	3.1.3. Ethoxylation of 1,3,5-tris(ethanol)hexahydro-s-	
	triazine	59
	3.1.4. Propoxylation of 1,3,5-tris(ethanol)hexahydro-s-	
	triazine	60
	3.1.5. Esterification of the Ethoxylated 1,3,5-tris	
	(ethanol)hexahydro-s-triazine	60
	3.2. The Surface Properties of the Prepared	
	Surfactants	73
	3.2.1. The Surface Tension () and Critical Micelle	
	Concentration (CMC)	73
	3.2.2. Effectiveness (_{CMC})	74
	3.2.3. Maximum Surface Excess (max)	75
	3.2.4. Minimum Area per Molecule (A _{min})	76
	3.3. The Thermodynamics Parameters	77
	3.4. Evaluation the Prepared Surfactants in Petroleum	82

Industry	
3.4.1. Evaluation the Prepared Surfactants as	
Corrosion Inhibitors	82
3.4.2. Corrosion Inhibition Behavior	82
3.4.3. Gravimetric Measurements	83
3.4.3.1. Effect of the Inhibitors Concentration	84
3.4.3.2. Effect of the Chemical Structure of the	
Prepared Inhibitors	89
3.4.4. Potentiodynamic Polarization	92
3.4.5. Electrochemical impedance measurements	98
3.4.6. Adsorption Isotherm	105
3.4.7. Theoretical Study	110
3.4.8. Scanning Electron Microscopy (SEM) for Metal	
Surface	130
3.4.9. The Relation between Corrosion Inhibition and	
Surface Properties of the Prepared Surfactants	132
3.4.10. Comparison between the Cationic and the	
Nonionic Inhibitors	133
3.5. Surfactants as Emulsion Breakers	137
3.5.1. Factors Affecting Demulsification Process	138
3.5.1.1. Effect of Molecular Structure	138
3.5.1.2. Effect of Partition Coefficient (Kp)	144
3.5.1.3. Effect of Molecular Weight	145
3.5.1.4. Effect of Hydrophilic-Lipophilic Balance	148
_	

	(HLB) on the Demulsifier Performance	
3	3.5.1.5. Effect of Dose on Demulsification Efficiency	148
(Conclusion	160
I	References	163
A	Arabic Summary	

List of Tables

Table		Page
(1)	List of Origin of the Used Chemicals	44
(2)	Physicochemical Properties of the Crude Oils Used	56
(3)	Surface Active Properties for the Both Prepared	
	Surfactants from Surface Tension Measurements at	
	25 °C	81
(4)	Thermodynamic Parameters of the Micellization, the	
	Adsorption, and the Structural Effect for the Both	
	Prepared Surfactants	81
(5)	Gravimetric Results of the Carbon Steel in 1M HCl	
	without and with the Addition of Different	
	Concentrations of the Cationic Inhibitors at 25 C for	
	24 Immersions Time	86
(6)	Gravimetric Results of the Carbon Steel in 1M HCl	
	without and with the Addition of Different	
	Concentrations of the Nonionic Inhibitors at 25 C	
	for 24 Immersions Time	87
(7)	Electrochemical Parameters for Carbon Steel	
	Electrode in 1M HCl in the Absence and Presence of	
	the Cationic Inhibitors at 25 C	96
(8)	Electrochemical Parameters for Carbon Steel	
	Electrode in 1M HCl in the Absence and Presence of	97

		1
	the Nonionic Inhibitors at 25 C	
(9)	EIS Parameters for the Corrosion of Carbon Steel in	
	1 M HCl in the Absence and Presences of Different	
	Concentrations of the Prepared Cationic Inhibitors at	
	25 °C	103
(10)	EIS Parameters for the Corrosion of Carbon Steel in	
	1 M HCl in the Absence and Presences of Different	
	Concentrations of the Prepared Nonionic Inhibitors	
	at 25 °C	104
(11)	Adsorption Parameters of the Prepared Inhibitors for	
	Carbon Steel in 1M HCl at 25 °C	108
(12)	Quantum Chemical Parameters of the Investigated	
	Cationic Inhibitors	124
(13)	Other Calculated Quantum Chemical Parameters for	
	the Investigated Inhibitors	125
(14)	Charge Density Distribution of the Investigated	
	Inhibitors	126
(15)	Effect of Structure Modification on Demulsification	
	Process.	141
(16)	Effect of Structure Modification on Demulsification	
	Process.	141
(17)	The Partition Coefficient and Molecular Weight of	
	the Prepared Demulsifiers	146
(18)	The Partition Coefficient and Molecular Weight of	
	the Prepared Demulsifiers	146

(19)	Water Separated and the Demulsification Efficiency	
	of Crude-Oil Emulsion (50% water content) Treated	
	by the demulsifiers of group I at 120 min, and 55 °C	150
(20)	Water Separated and the Demulsification Efficiency	
	of Crude-Oil Emulsion (50% water content) Treated	
	by the demulsifiers of group II at 120 min, and 55 °C	151
(21)	Water Separated and the Demulsification Efficiency	
	of Crude-Oil Emulsion (50% water content) Treated	
	by the demulsifiers of group II at 120 min, and 55 °C	152