

Ketamine-Dexmedetomidine versus Ketamine-Midazolam in anesthesia of burn Pediatric Patients

Thesis

Submitted for Partial Fulfillment of M.D. Degree In Anesthesiology

Presented by

Haitham Mohammad Shafeek Ahmad Rizk

M.B.B.Ch, M.Sc., Anesthesiology Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Alaa Eid Mohammad Hassan

Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Dr. Mohammed Mohammed Abdelfatah

Lecturer of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Dr. Ahmad Abdeldayem Abdelhaq

Lecturer of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain-Shams University

> > 2016

سورة البقرة الآية: ٣٢

My thanks are submitted first and foremost to ALLAH Who gave me the strength and ability to complete this work.

I would like to express my thanks and appreciation to Prof. Dr. Alaa Eid Mohammad Hassan, Professor of Anesthesia ,Intensive care and Pain management , Faculty of Medicine-Ain Shams University, for his candid opinions, timely feedback, insights and the effort and time he has devoted to the fulfillment of this work. I am indebted to his meticulous follow-up and constructive criticism.

My sincere gratitude and appreciation are also due to **Mohammed Mohammed Abdelfatah,** Lecturer of Dr. Anesthesia, Intensive care and Pain management, Faculty of Medicine-Ain Shams University, for his kind help, constant encouragement, constructive criticism, and the time and effort he dedicated to this work

I can't forget to thank with all appreciation, **Dr. Ahmed Abdeldayem Abdelhaq,** Lecturer of Anesthesia, Intensive care and Pain management, Faculty of Medicine-Ain Shams University, for the efforts and time he has devoted to accomplish this work.

Last but not least, all thanks to all members of my **Family**, especially, my Wife my Mother and my Father for pushing me forward in every step in the journey of my life.

Haitham Mohammad Shafeek Ahmad Rizk

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iv
Introduction	1
Aim of the Work	4
Review of Literature	
Ketamine	5
Midazolam	31
Dexmedetomidine	37
Patients and Methods	55
Results	60
Discussion	79
Summary	85
Conclusion	88
References	89
Arabic Summary	—

List of Abbreviations

Abbr. Full-term

ASA : American society of anesthesiology

AVP : Arginine vasopressin

BZDs : Benzodiazepines

CAMP : Cyclic adenosine monophosphate

CNS : Central nervous system

FDA : Food and Drug Administration

FLACC: Faces, Legs, Activity, cry and consolability

FPS-R: Revised Faces Pain Scale

GABA : Gamma amino butyric acid

HR : Heart rate

ICP : Intracranial pressureMAP : Mean arterial pressure

MRI : Magnetic resonance imaging

NMDA : N-methyl-D-aspartate

NO : Nitric oxide

PCA : Patient controlled Analgesia
PCP : Phenyl-cyclohexyl piperidine

PONV: Postoperative nausea and vomiting

SD : Standard deviation

SpO2 : Peripheral oxygen saturation

SPSS : Statistical Program for Social Science

TMN : Tuberomamillary nucleusVAS : Visual Analogue Scale

VLPO: Ventrolateral preoptic nucleus

List of Tables

Table No.	Title	Page No.
Table (1):	Ramsay Sedation Assessment Scal	le 57
Table (2):	Modified Aldrete Postanesthetic Recovery Score.	58
Table (3):	Comparison between groups as reg	
Table (4):	Comparison between groups as regage, weight and height	
Table (5):	Comparison between groups as reg	
Table (6):	Difference between baseline and o category HR in group I	
Table (7):	Difference between baseline and o category HR in group II.	
Table (8):	Comparison between groups as reg MAP.	
Table (9):	Difference between baseline and o category MAP in group I	
Table (10):	Difference between baseline and o category MAP in group II	
Table (11):	Comparison between groups as regarespiratory rate	
Table (12):	Difference between baseline and o category respiratory rate in group	
Table (13):	Difference between baseline and o category respiratory rate in group	

Table (14):	Comparison between groups as regard SPO2	71
Table (15):	Comparison between groups as regard temperature	72
Table (16):	Difference between baseline and other category temperature in group I	73
Table (17):	Difference between baseline and other category temperature in group II	74
Table (18):	Comparison between groups as regard intraoperative events.	75
Table (19):	Comparison between groups as regard times.	76
Table (20):	Comparison between groups as regard outcome measures.	77
Table (21):	Ramsay sedation scale of patients	78

List of Figures

Figure No	. Title	Page No.
Figure (1): Figure (2):	Ketamine metabolism Structure of the four subunits of the	
rigure (2).	receptor.	
Figure (3):	GABA receptor	32
Figure (4):	Midazolam structure	34
Figure (5):	Dexmedetomidine structure	43
Figure (6):	Comparison between groups as sex.	
Figure (7):	Comparison between groups as age, weight and height	
Figure (8):	Comparison between groups as HR.	
Figure (9):	Difference between baseline an category HR in group I	
Figure (10):	Difference between baseline an category HR in group II	
Figure (11):	Comparison between groups as MAP	•
Figure (12):	Difference between baseline an category MAP in group I	
Figure (13):	Difference between baseline an category MAP in group II	
Figure (14):	Comparison between groups as respiratory rate.	

Figure (15):	Difference between baseline and other category respiratory rate in group I	69
Figure (16):	Difference between baseline and other category respiratory rate in group II	70
Figure (17):	Comparison between groups as regard SPO2.	71
Figure (18):	Comparison between groups as regard temperature.	72
Figure (19):	Difference between baseline and other category temperature in group I	73
Figure (20):	Difference between baseline and other category temperature in group II.	74
Figure (21):	Comparison between groups as regard intraoperative events.	75
Figure (22):	Comparison between groups as regard times.	76
Figure (23):	Ramsay sedation scale of patients	78

Introduction

Parmacological methods have been used to provide patient comfort and pain relief for pediatric burn dressing changes. Pharmacological treatment is the primary approach, and several categories of drugs have been used to manage burn pain (Stoddard et al., 2002).

Ketamine is a phencyclidine derivative, primarily used for the induction and maintenance of general anesthesia, usually in combination with a sedative. Other uses include sedation in intensive care, analgesia (particularly emergency medicine), and treatment of bronchospasm. Ketamine has a wide range of favorable effects in humans, including analgesia, anesthesia, bronchodilatation and some side effects as hallucinations, elevated blood pressure. The effect of ketamine is thought to be the result of N-methyl-Daspartate (NMDA) receptor antagonism, opioid mu receptor agonism, and voltage-sensitive sodium channel interactions (Peck et al., 2008).

Midazolam is a short-acting drug in the benzodiazepine class used for treatment of acute seizures, moderate to severe insomnia, and for inducing sedation and amnesia before medical procedures. It possesses profoundly potent anxiolytic, amnestic, hypnotic, anticonvulsant, skeletal muscle relaxant, and sedative properties (*Olkkola et al.*, 2008).

Midazolam seems to somewhat help alleviate discomfort arising from emergence phenomena caused by Ketamine (*Doenicke et al.*, 1992).

Alpha 2 receptors are found in the peripheral and central nervous systems, platelets, and many other organs, including the liver, pancreas, kidney, and eye. Stimulation of the receptors in the brain and spinal cord inhibits neuronal firing, causing hypotension, bradycardia, sedation, and analgesia. The responses from other organs include decreased salivation, decreased secretion, decreased bowel motility and inhibition of renin release (*Gertler et al.*, 2001).

Dexmedetomidine is the S-enantiomer of medetomidine and an alpha $_2$ -adrenoreceptor agonist agent that has sedative, analgesic, and anxiolytic properties. Endomorphine-1 is an endogenous u-opioid agonist peptide and has synergistic antinociceptive interaction with dexmedetomidine and/or S-(+)-ketamine at the NMDA receptor level. Therefore, the combination of both these drugs has potent antinociceptive activity and may result in a decrease in the total drug dose. The mechanism of action of dexmedetomidine differs from

clonidine as it possesses selective alpha 2-adrenoceptor agonism especially for the 2A subtype of this receptor, which causes it to be a much more effective sedative and analgesic agent than clonidin (*Horvath et al.*, 2001).

Aim of the Work

This study aims to compare the effects of Ketamine – Dexmedetomidine versus Ketamine- Midazolam in anesthesia of pediatric burn patients.

Burn

Introduction

Children are naturally curious. As soon as they are mobile, they begin to explore their surrounding environment and play with new objects. By this way, they acquire the skills they need to survive in the world. At the same time, they come into contact with objects that can cause severe injuries. Playing with fire or touching hot objects can result in burns, which is a debilitating condition accompanied by intense pain and often by longer-term illness that creates suffering not only for the child but for their family and community. Fortunately, the prevention, acute care and rehabilitation of burns have improved greatly over the past decades. There is now an evidence that a number of measures are effective in preventing burns. These include the introduction and enforcement of items such as smoke alarms. sprinklers and fire-safe lighters, and laws residential regulating the temperature of hot-water taps. Nonetheless, considerable disparities exist between countries in the extent of their prevention, care and rehabilitation of burns. It is estimated that over half a million children are hospitalized with burn injuries per year in the world, with the majority occurring in low to middle income countries in Asia and Africa (Burd and Yuen, 2005).

Low socio-economic status of the family and low educational level of the mother are the main demographic factors associated with a high risk of burn injury (*Ahuja and Bhattacharya*, 2004).

Other factors associated are: high population density, high levels of household crowding, absence of water supply and psychological stress within the family. Children who were not the biological son or daughter of the head of the household are also at increased risk for burns (*Delgado et al. 2002*).

Non-accidental burn injury (i.e., abuse) is present in a higher proportion of families with a single parent, a younger mother, a low income or an unemployed parent (*Brown et al.*, 1997).

Many children with non-accidental burns have a higher incidence of previous notifications for suspected abuse or neglect to child protection agencies (*Andronicus et al.*, 1998).

The developmental progress of a child between the ages of 0 to 15, at both a neurocognitive and physical level, influences the type of burn injury most frequently sustained, as well as the child's ability to remove him/herself from a dangerous situation (*Robert et al.*, 2007).

Parents can inadvertently contribute to the mismatch between their child's developmental skills and the demands