MSCT SIGNS OF HPS EVALUATION IN 100 EGYPTIAN PATIENTS WITH POST-HEPATITIS C LIVER CIRRHOSIS

Thesis Submitted for the partial fulfillment of the Master degree in Radiodiagnosis

By

Eman Zaki Bassyouni Nossair

M.B.B.CH (Faculty of Medicine – Cairo University)

Supervised by

Prof. Youssriah Yahia Sabri

Professor of Radiodiagnosis Faculty of Medicine – Cairo University

Dr. Takeya Ahmed Taymour

Lecturer of Radiodiagnosis
Faculty of Medicine – Cairo University

Dr. Zeinab Mostafa Metwalli

Fellow of Radiodiagnosis
National Hepatology and Tropical Medicine Research Institute
(NHTMRI)

Faculty of Medicine Cairo University 2013

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor *Prof. Dr Youssriah Yahia Sabri*, Professor of Radiodiagnosis, Faculty of Medicine, Cairo University, for her continuous support, patience, motivation and enthusiasm. I could not have imagined having a better advisor and mentor. Without her help, I would never have finished this research.

Dr Takeya Taymour, Lecturer of Radiodiagnosis, Faculty of Medicine, Cairo University and *Dr Zeinab Mostafa*, Fellow of Radiodiagnosis, NHTMRI deserve my sincere expression of thanks for providing me with invaluable help and support.

I am also extremely indebted to *Dr. Selim Wadie*, Head of Radiodiagnosis department at NHTMRI and all the radiodiagnosis staff at NHTMRI for offering the necessary infrastructure to accomplish my research work.

It's my fortune to gratefully acknowledge the care of all members of my family and friends. Your understanding, faith, patience and support to me through the good and hard times are invaluable.

Eman Zaki Bassyouni

Abstract

respiratory event.

Keyword: IPVDS- MSCT- HPS-CPT- CIRRHOSIS.

HPS should be ruled out in a patient with hypoxemia and chronic hepatic disease and knowledge of such a syndrome is essential to formulate a diagnosis - thus influencing therapeutic strategies. Management should equally involve pulmonologists, hepatologists and, in particularly severe cases, transplant surgeons in a multidisciplinary approach. Patients with HPS are given a higher priority on the waiting list for liver transplantation based on the observation that liver transplantation outcome may be poorer in cases of advanced disease. Without liver transplantation the prognosis for HPS is poor with mortality usually because of complications of the hepatic disease rather than to a primary

TABLE OF CONTENTS

	Page
List of abbreviations	ii
List of tables	iv
List of figures	ν
Introduction	1
Aim of the study	3
Review of literature	4
Hepatitis C overview	4
Cirrhosis overview	11
Thoracic complications of liver cirrhosis	20
Hepatopulmonary syndrome	28
Patients and methods	42
Results	44
Case presentation	50
Discussion	72
Summary and conclusion	79
References and appendix	81
Arabic summary	91

LIST OF ABBREVIATIONS

A1AD Alpha 1 Antitrypsin Deficiency

ABG Arterial Blood Gases

ALP Alkaline Phosphatase

ALT Alanine Transaminase

ARDS Acute Respiratory Distress Syndrome

AST Aspartate Aminotransferase

COPD Chronic Obstructive Pulmonary Disease

CPT Child-Pugh-Turcotte Classification

EDHS Egyptian Demographic Health Survey

GIT Gastrointestinal Tract

HAV Hepatitis A Virus

HBV Hepatitis B Virus

HCC Hepatocellular Carcinoma

HCV Hepatitis C Virus

HIV-1 Human Immunodeficiency Virus Type 1

HPS Hepatopulmonary Syndrome

IBD Inflammatory Bowel Disease

INR International Normalized Ratio

IPVDS Intrapulmonary Vascular Dilatation Syndrome

LT Liver Transplantation

Lt Left

MENA Middle East And North Africa Region

MRI Magnetic Resonance Imaging

MSCT Multi-Slice Computed Tomography

NASH Non Alcoholic Steatohepatitis

NHTMRI National Hepatology and Tropical Medicine Research Institute

NO Nitric Oxide

PAT Parenteral Antischistosomal Therapy

PC Prothrombin Concentration

PO₂ Partial Pressure of Oxygen/Arterial Oxygen Tension

PPH Portopulmonary Hypertension

PT Prothrombin Time

Rt Right

SBP Spontaneous Bacterial Peritonitis

TIPS Transjugular Intrahepatic Portosystemic Shunt

TTE Transthoracic Echocardiography

US Ultrasonography

+ve Positive

-ve Negative

WHO World Health Organization

LIST OF TABLES

No.	Content	Page
Table 1	Laboratory Findings in Cirrhosis	16
Table 2	CTP Scoring System for Cirrhosis	19
Table 3	Patients' relevant clinical data	43
Table 4	Group A results	45

LIST OF FIGURES

No.	Content	Page
Figure 1	a) & b) axial contrast enhanced abdominal CT & axial T2 MRI image of the abdomen respectively showing a liver cirrhotic in configuration	17
Figure 2	A CXR of a patient with PPH secondary to cirrhosis shows a dilated pulmonary conus and aneurysmal dilatation of the right pulmonary artery. The image on the left is coronal reconstruction of contrast enhanced CT of the same patient, which depicts a probable re-canalized thrombus underlying the aneurismal dilatation of the right pulmonary artery	22
Figure 3	Esophageal varices in lower esophageal segment in 58-year-old man with cirrhosis and concomitant gastric submucosal varices and HCC	23
Figure 4	Hepatic hydrothorax in a 60-year-old man with liver cirrhosis. (a) Chest radiograph shows a large amount of pleural effusion in the right hemithorax. (b) Contrast-enhanced CT scan of the upper abdomen shows a focal defect in the right posterior diaphragm (arrow), a finding indicative of a Bochdalek foramen. Also noted are right pleural effusion and ascites	24
Figure 5	(a) Chest X-ray and (b) Chest CT showing multiple nodular lesions scattered in both lungs, suggesting metastasis from HCC	27
Figure 6	a) In a healthy lung with uniform alveolar ventilation and pulmonary blood flow, the diameter of the capillary ranges between 8 and 15 μ m, oxygen diffuses properly into the vessel, and ventilation—perfusion is well balanced. b) In patients with hepatopulmonary syndrome, capillaries become dilated and blood flow is not uniform. Ventilation—perfusion mismatch emerges as the predominant mechanism, irrespective of the degree of clinical severity and coexists with restricted oxygen diffusion into the center of the dilated capillaries in the most advanced stages.	30
Figure 7	Contrast echocardiogram. Panel A: apical four-chamber view before injection of agitated saline (contrast); Panel B: apical four-chamber view after contrast injection showing opacification of the RA and RV. Panel C: apical four-chamber view showing microbubbles within the LA and LV 5 heart beats after its appearance in the right heart. LA: left atrium, LV: left ventricle, RA: right atrium, and RV: right ventricle.	34

Figure 8	99Technetium macroaggregated albumin perfusion imaging in a patient with HPS shows a right to left shunt. The 99mTc-MMA has entered the systemic circulation and has perfused the kidneys	34
Figure 9	Anterior whole-body image obtained after intravenous injection of ^{99m} Tc-labeled macroaggregated albumin shows activity in the brain, liver, and spleen, findings consistent with an intrapulmonary right-to-left shunt	35
Figure 10	High-resolution CT scan (1-mm section thickness) shows dilatation of distal pulmonary arteries with subpleural telangiectasia (arrowheads).	36
Figure 11	CT scan (lung window, 7-mm section thickness) shows nodular dilatation of peripheral pulmonary vessels (arrows), which are connected to a feeding artery and draining vein. Also noted is bulging of the azygoesophageal recess (arrowhead), a finding due to dilated paraesophageal veins	37
Figure 12	Axial contrast enhanced CT (right) and a pulmonary angiogram (left) show dilated pulmonary vasculature in a 53-year-old man with CLD associated with HPS	37
Figure 13	Pulmonary angiogram obtained in a 68-year-old woman with hepatopulmonary syndrome shows dilated and tortuous peripheral pulmonary arteries (arrows) but no evidence of arteriovenous shunting	38
Figure 14	Group A results	45
Figure 15	Patients with positive CT findings' Child's classification	46
Figure 16	Clinically significant HPS patients' Child's classification	47
Figure 17	Subclinical HPS patients' Child's classification	47
Figure 18	Group A negative patients' Child's classification	48

INTRODUCTION

INTRODUCTION

Lung complications may occur as a result of hepatic disease from any cause and represent a highly heterogeneous group of conditions. Early recognition of such complications may be challenging but is crucial both in forming a meaningful differential diagnosis and in avoiding severe sequelae and irreversible damage. In such patients, lung complications are often misdiagnosed because anemia, ascites and muscle wasting are more common causes of respiratory symptoms. Although a number of different pathogenetic mechanisms are likely to be involved, chronic liver dysfunction may cause pulmonary manifestations because of alterations in the production or clearance of circulating cytokines and other mediators. This is likely to be the case in hepatopulmonary syndrome (HPS) (*Spagnolo et al., 2010*).

A relationship between the liver and the lung was first noted by Fluckiger (1884) based on his observation of a woman with cirrhosis, cyanosis, and clubbed digits. This relationship was not formalized until almost a century later when Kennedy and Knudson (1977) described 'hepatopulmonary syndrome' as a clinicopathological entity characterized by hypoxemia and the pathogenetic hallmark of intrapulmonary vascular dilatation (*Vincent*, 2008).

HPS is defined as the triad of liver disease, arterial hypoxemia (arterial oxygen tension less than 70 mmHg) and intrapulmonary vascular dilatation (*Krowka*, 2000). It is found most commonly in the setting of cirrhosis and manifests clinically as progressive dyspnea, cyanosis, spider nevi, clubbing, hypoxemia, platypnea and orthodeoxia (*Kim et al.*, 2009).

In the appropriate clinical setting (i.e., patients with liver disease and hypoxemia in the absence of significant cardiopulmonary disease), the diagnosis of HPS requires evidence of pulmonary vascular dilatation. Contrast-enhanced transthoracic echocardiography represents the diagnostic gold standard for HPS (Rodriguez and Krowka 2008). However, CT findings of HPS include dilatation of distal peripheral lower lobe pulmonary arteries that do not taper normally and extend out to the pleural surface, juxtapleural telangiectasia and nodular dilatation of peripheral pulmonary vessels (McAdams et al., 1996).

Currently hepatitis C is the most significant public health problem in Egypt with an estimated prevalence of 14.7% among the 15–59 years age group according to the Egyptian Demographic Health Survey (EDHS) (*El-Zanaty and Way, 2009*). Approximately 50% to 85% of infected individuals develop chronic hepatitis among whom 20 % progress to cirrhosis making chronic hepatitis C the number one cause of liver cirrhosis in Egypt (*Al-Sherbiny et al., 2005*). According to this striking prevalence and since HPS is found most commonly in the setting of cirrhosis, in the study conducted HPS was evaluated among patients of post hepatitis C cirrhosis.

AIM OF STUDY

AIM OF THE STUDY

The objective of conducting this research was to study the prevalence of HPS among post hepatitis C cirrhotic patients using MSCT.

REVIEW OF LITERATURE