Role of 3D-Ultrasonography in the evaluation of postmenopausal bleeding

Thesis

Submitted for partial fulfillment for the M.Sc. Degree in Obstetrics and Gynecology

By

Bahie Mahmoud Zaki

M.B.BCh.

Resident of Obstetrics and Gynecology Al-Galaa Teaching Hospital

Supervised by

Prof. Dr. Ahmad Aref

Professor of Obstetrics and Gynaecology

Ass. Prof. Dr. Hasan Omar

Professor of Obstetrics and Gynaecology

Dr. Ahmad Mahmoud

Lecturer of Obstetrics and Gynecology

Faculty of Medicine Cairo University 2009

Acknowledgment

First of all, I wish to express my sincere thanks to God for his care and generosity throughout of my life.

I would like to express my sincere appreciation and my deep gratitude to **Prof. Dr.**

, Professor of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, who assigned the work .

I would like to express my great thanks to **Dr.**, lecturer of ..., faculty of ..., for his great support throughout the whole work.

I am also deeply indebted to **Dr.**, Assistant professor of Obstetrics and Gynecology, faculty of medicine, Cairo University, for his great support throughout the whole work as well for the tremendous effort he has done in the meticulous revision of this work.

At last, I am indebted for family and friends for their great support, patience and continuous encouragement.

Bahie Mahmoud Zaki

Abstract

Transvaginal ultrasound is often recommended as a preliminary 'noninvasive' technique for assessing the endometrium in women with PMB.

Unfortunately, it cannot give a definitive answer as to the presence or absence of malignancy, although it can sometimes be helpful in the assessment of uterine polyps.

There is no consensus in the literature as to what the cut-off value for normal endometrial thickness should be. It has been reported as anywhere from 4–8 mm.

Obviously the lower the cut-off value, the higher the sensitivity for detection of endometrial cancers and its precursors but at a cost of lower specificity and increased false positives.

Keywords:

Three-dimensional transvaginal ultrasound, color Doppler, transabdominal ultrasound, endometrial thickness, atrophic endometrium, endometrial hyperplasia, endometrial malignancy, polyp, myoma, endometritis.

Contents

	Page
INTRODUCTIONAND AIM OF WORK	
REVIEW	
* Physics of 3D-Ultrasound	3
* Postmenopausal bleeding	17
* Role of 3D-Ultrasound in endometrial malignancy	25
* Patients and methods	42
* Results and discussion	46
SUMMARY	58
REFERENCES	61
ARABIC SUMMARY	69

List of figures

Fig.N°	Figure title	Page N*
Fig.1	Tracked free hand 3D scanning	4
Fig.2	Untracked free hand 3D scanning	4
Fig.3	Mechanical 3D scanning	6
Fig.4	2D array scanning	6
Fig.5	Doppler Ultrasound	10
Fig.6	Oblique coronal endovaginal 3D US	12
Fig.7	Multiplanar reformatted 3D US	12
Fig.7a	3D US image with ovarian follicles	13
Fig.7b	3D US image with enlarged ovarian follicles	13
Fig.8	Power Doppler imaging	14
Fig.9a	Breast imaging, nipple-areolar complex	14
Fig.9b	Breast imaging, duct ectasia and multiple cysts	15
Fig.10a	3D US guided breast biopsy, longitudinal plane	15
Fig.10b	3D US guided breast biopsy, coronal and transaxial plane	16
Fig.10c	3D US guided breast biopsy, longitudinal and coronal plane	16
Fig.11	TVU: endometrial hyperplasia	36
Fig.12	TVU: endometrial lining in endometrial carcinoma	37
Fig.13	Power Doppler in endometrial carcinoma	38
Fig.14	Endometrial polyp	40
Fig.15	Submucosal fibroid	40
Fig.16	Postmenopausal endometrial atrophy	41

List of tables

Table.N°	Table title	Page N°
1	Causes of postmenopausal bleeding	19
2	Relative risks for endometrial cancer	20
3	Algorithm for the management of abnormal vaginal bleeding	22
4	Number and percentage of the different pathologies results with its correspondants BMI and parity	46
5	cut-off value of atrophic endometrium	47
6	cut-off value of benign lesions of endometrium	47
7	cut-off value of endometrial hyperplasia	48
8	cut-off value of malignant endometrium	49
9	total cut-off value of all pathologies	49
10	Sensitivity, specificity, PPV (positive predictive value) and NPV (negative predictive value) of the 3D-US-endometrial thickness cut-off test to diagnose atrophic endometrium	50
11	Different statistical values of atrophic endometrium according to age, BMI and 3D-US endometrial thickness	51

12	Different statistical values of benign lesions according to age, BMI and 3D-US endometrial thickness	51
13	Different statistical values of endometrial hyperplasia according to age, BMI and 3D-US endometrial thickness	52
14	Different statistical values of endometrium malignancy according to age, BMI and 3D-US endometrial thickness	52
15	Correlation of each pathology 3D-US cut-off value of endometrial thickness with age using statistical parameters as p and r (pearson coefficient)	53
16	Correlation of each pathology 3D-US cut-off value of endometrial thickness with BMI using statistical parameters as p, r and accuracy	54

List of abbreviations

Ob/Gyn.	Obstetrics and Gynecology
2D US	Two-dimensional Ultrasound
3DHS	Three-dimensional hysterosonography
3D-HyCoSy	Three-dimensional hysterosalpingo contrast sonography
3DPD	Three-dimensional power doppler
3D US	Three-dimensional Ultrasound
4D US	Four-dimensional Ultrasound
ACR-	American college of radiology-breast imaging reporting & data
BIRADS	system
AFP	Alpha fetoprotein
ANOVA	Analysis of variance
B-mode	Brightness mode
BMI	Body mass index
BRCA-1	Breast cancer gene-1
BRCA-2	Breast cancer gene-2
CA	Cancer Antigen
CAD	Computer aided detection
CDC	Center for disease control
CI	Confidence interval
CT	Computed tomography
D	Diastolic
D & C	Dilatation & curettage
DCIS	Ductal carcinoma in situ
DES	Diethylstilbestrol
DGC	Depth gain compensation
E2	Estradiol
EOC	Epithelial ovarian cancer
EORTC	European organization for research and treatment of cancer
EP	Extrauterine pregnancy
ET	Endometrial thickness

FDG	Fluoro-Dioxyglucose
FI	Flow index
FMP	Final menstrual period
FSH	Follicular Stimulating hormone
GI	Gastro-intestinal
hCG	Human chorionic gonadotropins
HNPCC	Hereditary non-polyposis colorectal cancer
HRT/HT	Hormonal replacement therapy
HSG	Hysterosalpingography
HSSG	Hystero-sono-salpingography
HPV	Human papilloma virus
IVD	Intra-Vascular Doppler
KHz	Kilo-hertz
LH	Luteinizing Hormone
MD	Medical doctor
MHz	Mega-hertz
MI	Myometrial invasion
MRI	Magnetic resonance imaging
MWMHP	Melbourne Women's Midlife Health Project
NPV	Negative predictive value
P	probability
PDU	Power doppler ultrasound
PET	Positron emission tomography
PI	Pulsatility index
PID	Pelvic inflammatory disease
PMB	Postmenopausal bleeding
PPV	Positive predictive value
	Pearson correlation
r RI	Resistive index
ROC	
RRs	Receiver operating curve Relative risks
RT-PCR	
	Reverse transcriptase-polymerase chain reaction Retro-verted flexed
RVF S	
	Systolic
SCSH	Saline contrast sonohysterography
SIS	Saline-infusion sonography
SLN	Sentinel lymph node
SMWHS	Seattle Midlife Women's Health Study
SONAR	Sound navigation and ranging
STRAW	Stages of Reproductive Aging Workshop
TAS	Transabdominal sonography
TGC	Time gain compensation
TOA	Tubo-ovarian abscess
TVCDS	Transvaginal color doppler sonography
TVU, TVUS	Transvaginal ultrasound
TVS	Transvaginal sonography
US	Ultrasound
USG	Ultrasonography

VAIN	Vaginal intraepithelial neoplasia
VFI	Vascularization flow index
VI	Vascularity index
VOCAL	Virtual organ computer-aided analysis
VS	Versus
WHO	World Health Organization

Introduction 1

Introduction

With advances occurring in medicine on a daily basis, it was only a matter of time before essential gynecological investigations, such as ultrasound, were modified. Many clinicians remain unconvinced by its reputed advantages and 3D ultrasound is not without disadvantages. (Albufalia et al., 2001)

These mainly relate to the cost implications and training requirements. 3D ultrasound imaging is still at a relatively early stage in terms of its role as a day-to-day imaging modality in gynecology and reproductive medicine. (Alcazar et al., 2004)

3D imaging has several obvious benefits that relate to an improved spatial orientation and the demonstration of multiplanar views, of which the coronal plane is particularly useful. It offers a more objective and reproducible measurement of volume and vascularity of the region of interest, and an improved assessment of normal and pathological pelvic organs through further postprocessing modalities, including tomographic ultrasound imaging and various rendering modalities. It also has the benefit of offering reduced scanning time, the option of teleconsultation and storage of images for re-evaluation. (**Baba K. et al., 1997**)

However, other than its application in the assessment and differentiation of uterine anomalies, there is very little evidence demonstrating that 3D ultrasound results in a clinically relevant benefit or negates the need for further investigation. Future work should ensure that 3D ultrasound is compared with conventional imaging in randomized trials where the observer is blind to the outcome, only after which will we truly be able to evaluate its role in an evidence-based manner.(**Neeta Pandit-Taskar**, 2005)

Gynecologic malignancy is a leading cause of cancer in women and constitutes a significant health issue worldwide. It accounts for approximately 20% of visceral cancers. In 2003, 83,700 gynecologic malignancies were newly diagnosed and 26,800 patients died. Although uterine cancer has the highest incidence of all gynecologic malignancies, ovarian cancer has the highest mortality.(Neeta Pandit-Taskar,2005)

Introduction 2

Transvaginal ultrasound is often recommended as a preliminary 'noninvasive' technique for assessing the endometrium in women with PMB. Unfortunately, it cannot give a definitive answer as to the presence or absence of malignancy, although it can sometimes be helpful in the assessment of uterine polyps. There is no consensus in the literature as to what the cut-off value for normal endometrial thickness should be. It has been reported as anywhere from 4–8 mm. Obviously the lower the cutoff, the higher the sensitivity for detection of endometrial cancers and its precursors but at a cost of lower specificity and increased false positives.

The aim of this study is to evaluate the effectiveness of 3D and color doppler sonography in the diagnosis of postmenopausal bleeding and especially its causes as endometrial carcinoma and polyps.

CHAPTER I Physics Of 3D Ultrasound

Physics of 3D Ultrasound

Basic principles

3D-Ultrasound technique:

- <u>Data acquisition technique:</u>

Three-dimensional images can be constructed with 2D US arrays, which produce 3D image data directly. More commonly, they are reconstructed from a series of 2D images produced with one-dimensional US arrays. Regardless of which method is used, one must know the relative position and angulation of each 2D image and must acquire the images rapidly or with gating to avoid motion artifacts. If these two criteria are not met, the 3D images may be inaccurate. (**B.Downey, 1999**).

The four main types of 3D US data acquisition systems are (a) tracked freehand systems, (b) untracked freehand systems, (c) mechanical assemblies, and (d) 2D arrays. (**Fenster**, 1999).

- Tracked Freehand Systems:

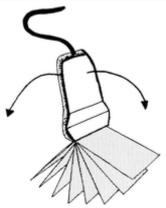

With tracked freehand systems, the operator holds an assembly composed of the transducer with an attachment and manipulates it over the anatomic area being evaluated (Fig 1). Two-dimensional images are digitized as the transducer is moved. During this procedure, the exact relative position and angulation of the US transducer must be known for each digitized image, and the operator must ensure that there are no significant imaging gaps.(**B.Downey et al., 1999**)

Figure 1. Tracked freehand 3D scanning. (B.Downey et al., 1999)

- Untracked freehand systems:

With untracked freehand systems, 2D images are digitized as the operator moves the transducer with a smooth, steady motion (Fig 2). Although this technique is usually the most convenient for the operator, image quality is variable and depends largely on how smoothly and steadily the operator moves the transducer. To reconstruct a 3D image, a linear or angular space between digitized images is assumed. Geometric measurements such as distance or volume may be inaccurate and should not be taken because there is no direct information regarding the relative position of the digitized images. (Fig.2). (Fenster et al., 1999)

Figure 2. Untracked freehand 3D scanning. Diagram shows how the transducer can be tilted about a fixed point on the skin surface.(**Fenster et al.,1999**)

- Mechanical Assemblies:

With mechanical assemblies, the transducer is propelled or rotated mechanically, and 2D images are digitized at predetermined spatial or angular intervals (Fig 3). Although these mechanical transducer attachments are more cumbersome for the user, they also improve the geometric accuracy of the resulting images. To date, their greatest utility has been in intracavitary and intraluminal examinations, in which the area of interest is relatively small and motion artifact is less of a problem. Three different scanning techniques can be used: linear scanning, tilt scanning, and rotational scanning.(**B.Downey et al., 1999**)

With linear scanning, a mechanical assembly moves the transducer in a linear fashion along the patient's skin (Fig 3). This technique has certain advantages; for example, by tilting the transducer away from the vertical plane, 3D color and power Doppler US (which are angle dependent) can be performed. Linear scanning also allows adjustment of the interval between the 2D digitized images for proper sampling and makes 3D reconstruction very fast and efficient because the images are parallel and are separated by a predetermined interval. (Nelson TR.et al., 1998)

With tilt scanning, the transducer is tilted about its face, and images are digitized at a predetermined angular interval (Fig 3). The mechanism for tilt scanning is usually quite small, which allows easy handheld manipulations. However, because the digitized images are arranged like a fan, the space between them increases and the resolution decreases with increasing depth. (Nelson TR.et al., 1998)

With rotational scanning, the transducer is rotated about its central axis (Fig 3), producing digitized images in a propellerlike arrangement. As a result, the sampling distance increases and the resolution decreases as distance from the rotational axis increases. In addition, the digitized images intersect along the rotational axis, so that any motion creates artifacts at the center of the 3D image. (**Tong S.et al., 1999**)