Sepsis and Acute Kidney Injury; Interventions that Attenuate Acute Kidney Injury in Patients with Sepsis

Essay

Submitted for Partial Fulfillment of Master Degree in Intensive Care Medicine

By

Eslam Abu-bakrAli Mohammad

M.B, B.Ch. Faculty of Medicine, Ain Shams University

Supervised by

Prof. Dr. Amr Essam Eldeen Abd Elhameed

Professor of Anesthesiology & Intensive Care Medicine & Pain Management Faculty of Medicine, Ain Shams University

Prof. Dr. Sherif Farouk Ibrahim

Professor of Anesthesiology L Intensive Care Medicine L Pain Management Faculty of Medicine, Ain ShamsUniversity

Dr. Assem Adel Moharrum

Lecturer of Anesthesiology & Intensive Care Medicine & PainManagement Faculty of Medicine, Ain ShamsUniversity

Faculty of Medicine
Ain Shams University
2013

بِسْمِ اللَّهِ الرّحَمَٰنِ الرّحِيمِ

(...رَبِّ أُوزِعنِي أَن أَشكُر َ نِعمَتَكَ الْتِي أَنْ أَشكُر َ نِعمَتَكَ الْتِي أَنْ عَلَى والدَيَّ و على والدَيَّ و أَنْ أَعْمَلَ صَالِحاً تَرْضَاهُ و أَدْخِلْنِي برَحْمَتِكَ فِي عِبَادِكَ الصَّالِحِينَ)

صدق الله العظيم

النمل.. اية رقع 19

Acknowledgments

First and foremost, I feel always indebted to **Allah**, the Most Merciful, Who gives me power to accomplish this work.

I would like to express my deepest appreciation and sincere gratitude to **Prof. Dr. Amr Essam Eldeen Abd Elhameed**, Professor of Anesthesiology & Intensive Care Medicine & Pain Management, Faculty of Medicine, Ain Shams University, for his sincere help, constant encouragement, constructive critism, and valuable guidance, I was truly honored to work under his supervision.

I wish also to express my great gratitude and utmost appreciation to **Prof. Dr. Sherif Farouk Ibrahim**, Professor of Anesthesiology & Intensive Care Medicine & Pain Management, Faculty of Medicine, Ain Shams University, for his valuable suggestions and instructions during the progress of this work.

Special thanks go to **Dr. Assem Adel Moharrum**, Lecturer of Anesthesiology & Intensive Care Medicine, & Pain Management, Faculty of Medicine, Ain Shams University, for his great efforts and help to accomplish this work.

I owe special thanks to **Family**, for their care, patience and continuous encouragement.

🖎 Eslam Abu-bakr Ali Mohammad

Contents

Subject	Page	No.
List of Abbro	eviations	i
List of Table	S	iii
List of Figur	es	iv
Introduction		1
Aim of the W	Vork	3
Chapter (1):	Physiology of the Kidney	4
Chapter (2):	Pathophysiology of Sepsis Induced Acute Kidney Injury	25
Chapter (3):	Early Recognition and Biomarkers of Renal Damage	40
Chapter (4):	Management that Attenuate Acute Kidney Injury in Patients with Sepsis	74
Summary		92
References		94
Arabic Sumr	narv	-

List of Abbreviations

ACA : Activated tricarboxylic acid ADP : Adenosine di-phosphate

ADPKD: Autosomal dominant polycystic kidney disease

AKI : Acute kidney injury

AKIN : Acute Kidney Injury Network

ANP : Atrial natriuretic peptide

APC : Activated protein C

aPTT : Activated partial thromboplastin time **ARDS** : Acute respiratory distress syndrome

ARF : Acute renal failure
ATN : Acute tubular necrosis
ATP : Adenosine tri-phosphate
BNP : Brain natriuretic peptide
BUN : Blood urea nitrogen

CAVH : Continuous arteriovenous haemofiltration

CDK : Chronic kidney disease

COP : Cardiac output

CRRT : Continuous renal replacement therapyCVVH : Continuous venovenous haemofiltration

CyC : Cystatin C

DNA : Deoxyribonucleic acid

ECF : Extracellular fluid

ELISA : Enzyme linked immunesorbent assay

ESKD : End-stage kidney diseaseGFR : Glomerularfiltration rate

HVHF : High Volume Haemofiltration

ICU : Intensive care unit

IHD : Intermittent hemodialysis

IL-18 : Interleukin

List of Abbreviations (cont...)

iNOS : Inducible nitric oxide synthase

JG : Juxtaglomerular

JGA : Juxtaglomerular apparatusKIM : Kidney injury molecule

L-FABP: Liver fatty acid binding protein

LPS : Lipopoly saccharide

MMP : Matrix methaloproteinase

MODS : Multiple organ dysfunction syndrome

mRNA : Massenger ribonucleic acid

MV : Mechanical ventilation

NADPH : Nicotinamide adenine dinucleotide phosphate
 NGAL : Neutrophil gelatinase associated lipocalin
 NHE₃ : Sodium/ hydrogen exchange isoform 3

NO : Nitric oxide

NSAIDs : Nonsteroidal anti-inflammatory drugs

RBF : Renal blood flow

RCTs : Randomized controlled trials

rhTM: Recombinant human soluble thrombomodulin

rhTM: Recombinant human thrombomodulin

RIFLE: Risk-injury-failure-loss-end stage kidney disease

RNOS : Reactivenitrogen-oxygenspecies

RRT : Renal replacement therapy

SCr : Serum creatinine
TCA : Tricarboyxlic acid
TM : Thrombomodulin
TV : Tidal volumes
Tv : Tindal volume
UO : Urine output

UTI : Urinary tract infection

List of Tables

Table 1	No. Title	Page No.
Table (1):	Current status of new biomarked detection of AKI in various clinic	_
Table (2):	Potential uses of NGAL as Bioma	arker 65
Table (3):	Risk of renal failure, injury to failure of kidney function, los function, and end-stage renal Acute Kidney Injury Network schemes for acute kidney injury o	s of kidney failure and classification
Table (4):	Potential applications for renal therapy	-
Table (5):	Overview of the advantages of different antice AKI patients	coagulants in

List of Figures

Figure	No.	Title	Page No.
Figure (1)	-	•	on and the collecting6
Figure (2)	a pla Henle arteri	eque of cells in the e where the loop oles supplying its	distinct segment but e ascending loop of passes between the renal corpuscle of
Figure (3)	: Anato	omy of the juxtaglon	nerular apparatus8
Figure (4)	majo kidne	r vessels that supply by and schematic of	kidney showing the the blood flow to the the microcirculation
Figure (5)	: Force	es involved in glome	rular filtration19
Figure (6)			-24p3 and Apo-24p3 poptosis61

Introduction

cute kidney injury (AKI) is a frequent and serious complication of sepsis in intensive care unit (ICU) patients, particularly in the elderly. Moreover, there is strong evidence that sepsis and septic shock are the most important causes of AKI in critically ill patients, which account for 50% or more of cases of AKI in ICUs, and are associated with a very high mortality (*Ishani*, 2009).

AKI is a broad clinical syndrome encompassing various etiologies, including pre-renal azotemia, acute tubular necrosis, acute interstitial nephritis, acute glomerular and vasculitic renal diseases, and acute postrenal obstructive nephropathy. More than one of these conditions may coexist in the same patient and epidemiological evidence supports the notion that even mild, reversible AKI has important clinical consequences, including increased risk of death(*Kellum and Lameire*, 2013).

develops when the initial, appropriate host infection becomes amplified and response to an dysregulated. Because of very high mortality rates, it is fundamental to promptly recognize sepsis-induced AKI and to choose the most appropriate therapeutic modality. It is well established that the kidney is a commonly affected organ during involvement carries high risk sepsis, and its mortality(Bagshaw et al., 2009).

The pathophysiology of AKI in sepsis is complex and multi-factorial and includes intrarenal hemodynamic changes, endothelial dysfunction, infiltration of inflammatory cells in the renal parenchyma, intraglomerular thrombosis, and obstruction of tubules with necrotic cells and debris(*Wan et al.*, 2008).

Accurate diagnosis of AKI in an ICU setting is challenging. Indeed, the characteristic swings in renal function over time in critically ill patients largely reduce the validity of a sole creatinine-based AKI assessment. This has stimulated researchers to establish multidimensional classification systems that use specific criteria to grade AKI severity. At present, the RIFLE classification represents the most widely accepted tool to "score" AKI severity (*Honore et al.*, 2007).

Physiopathological model of AKI have delayed the development of successful drug treatments, and at present much of the treatment of AKI in sepsis focuses on the support of kidney function. The management of AKI in septic patients is complicated, due to the existing hemodynamic instability and associated multi organ dysfunction. As a result, in recent years, both continuous and intermittent renal replacement therapy (RRT) techniques have been developed (*Pannu*, 2008).

Aim of the Work

n this essay we will discuss the fundamental mechanisms of sepsis-induced AKI, early recognition and biomarkers of renal damage and recent potential therapies.

Chapter (1): **Physiology of the Kidney**

Tost people are familiar with one important function of the kidneys to get rid of the body waste materials that are either ingested or produced by metabolism. A second function that is especially critical is to control the volume and composition of the body fluids. For water and virtually all electrolytes in the body, the balance between intake (due to ingestion or metabolic production) and output (due to excretion or metabolic consumption) is maintained in large part by the kidneys. This regulatory function of the kidneys maintains the stable environment of the cells necessary for them to perform their various activities. The kidneys perform their most important functions by filtering the plasma and removing substances from the filtrate at variable rates, depending on the needs of the body. Ultimately, the kidneys clear unwanted substances from the filtrate (and therefore from the blood) by excreting them in the urine while returning substances that are needed back to the blood(Guyton and Hall, 2006).

The kidneys play a dominant role in regulating the composition and volume of the extracellular fluid (ECF). They normally maintain a stable internal environment by excreting appropriate amounts of many substances in the urine. These substances include not only waste products and foreign compounds, but also many useful substances that are present in excess because of eating, drinking, or metabolism(*Tanner*, 2003).

The nephron is the basic unit of renal structure and function

Each human kidney contains about one million nephrons(Figure 1), which consist of a renal corpuscle and a renal tubule. The renal corpuscle consists of a tuft of capillaries, the glomerulus, surrounded by Bowman's capsule. The renal tubule is divided into several segments. The part of the tubule nearest the glomerulus is the proximal tubule. This is subdivided into a proximal convoluted tubule and proximal straight tubule. The straight portion heads toward themedulla, away from the surface of the kidney. The loop of Henle includes the proximal straight tubule, thin limb, and thick ascending limb. The next segment, the short distal convoluted tubule, is connected to the collecting duct system by connecting tubules. Several nephrons drain into a cortical collecting duct, which passes into an outer medullary collecting duct. In the inner medulla, inner medullary collecting ducts unite to form large papillary ducts. The collecting ducts perform the same types of functions as the renal tubules, so they are often considered to be part of the nephron. The collecting ducts and nephrons differ, however, in embryological origin, and because the collecting ducts form a branching system, there are many more nephrons than collecting ducts. The entire renal tubule and collecting duct system consists of a single layer of epithelial cells surrounding fluid (urine) in the tubule or duct lumen. Cells in each segment have a characteristic histological

Chapter (1): Physiology of the Kideny

appearance. Each segment has unique transport properties (*Tanner*, 2003).

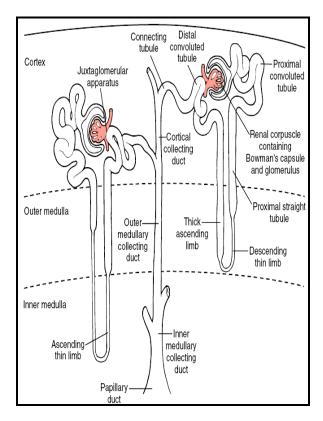


Figure (1): Components of the nephron and the collecting duct system. On the left is a longlooped juxtamedullary nephron; on the right is a superficial cortical nephron(*Tanner*, 2003).

Three groups of nephrons are distinguished, based on the location of their glomeruli in the cortex: superficial, midcortical, and juxtamedullary nephrons. The juxtamedullary nephrons, whose glomeruli lie in the cortex next to the medulla, comprise about one-eighth of the nephron population. They differ in several ways from the other nephron types: they have a longer loop of Henle, longer thin limb (both descending and ascending portions), larger glomerulus, lower renin content,