Ultrasonographic Screening of Renal Anomalies in Normal Newborns

Submitted for partial fulfillment of M.Sc Degree in pediatrics by

Yomna Mohamed Farag

M.B.,B.Ch. Faculty of medicine Cairo University

Supervised by

Prof. Dr.

Maha Fathy Sheba

Professor of Pediatrics Faculty of medicine Cairo University

Prof. Dr.

Iman Fathy Iskander

Professor of Pediatrics Faculty of medicine Cairo University

Ass.Prof.Dr.

Samar Mohamed Sabry

Assisstant Professor of Pediatrics Faculty of medicine Cairo University

> Faculty of Medicine Cairo University 2009

ACKNOWLEDGEMENT

First of all, thanks to **God** for his grace and mercy, and for giving me the effort to complete this work.

I was fortunate enough to carry out this work under the supervision of Prof. **Dr. Maha Sheba**, Professor of Pediatrics, Cairo University. Thanks for her generous help and advice. She was the operator of all the ultrasound studies done through out this study and it was really a great effort. It was a great honour to work with a great professor like her.

I would like to express my gratitude and thanks to Prof. **Dr. Iman Iskandar**, Professor of Pediatrics, Cairo University for her support, guidance and advice through this work.

Word will never be able to express my deepest gratitude and appreciation to Ass. Prof. **Dr. Samar Sabry**, Assisstant Professor of Pediatrics, Cairo University for her kindness, great patience, continuous support and unlimited help throughout the work.

Special thanks to all doctors assisting Prof. Dr Maha Sheba in the ultasonography unit for their kind help.

Last, but not least I would like to thank my family, namely my dear parents, husband and brothers for supporting me throughout my life.

Abstract

Birth defects of the renal tract are the most common abnormalities detected. Ultrasound is an accurate imaging method in the evaluation of the urinary tract during early life. This study was performed on 200 potentially normal newborns. Twelve cases were detected by U/S including 2 cases with pelvic kidney, 2 cases with renal duplex, 1 case with PCK disease,1 case with PUV and 6 cases with persistent renal pelvic diameter dilatation ≥1 cm. Ultrasonography is effective for early detection of silent renal anomalies thus allowing for early treatment.

Key words Congenital anomalies of the kidney and urinary tract (CAKUT), screening, ultrasonography.

Contents

List of tablesList of figuresList of abbreviations	ii
IntroductionAim of the workReview of literature	
Chapter one: Development of the kidney Overview of human morphogenesis	10
Chapter Two: Genetic and molecular control morphogenesis Transcriptional control of ureteric bud outgrowth	14 em15
Chapter Three: Congenital abnormalities of the I urinary tract Renal agenesis. Renal hypoplasia. Renal ectopia. Renal fusion. Renal dysplasia. Multi-cystic dysplastic kidney. Abnormal renal echogenecity. Renal tumors.	20 24 25 27 29
Chapter Four: Cystic kidney diseases (CKDs) Etiology of cyst formation in cystic kidney diseases	35

Causes of cystic kidney diseases	37
Syndromes associated with cystic kidney diseases	
Autosomal recessive polycystic kidney disease	
Autosomal dominant polycystic kidney disease	
Solitary renal cysts	
The nephronophthiasis complex	56
Treatment prospectives of cystic kidney diseases	
Chapter Five: Lower urinary tract abnormalities	
Hydronephrosis, pelviectasis and obstruction	61
Ureteopelvic junction obstruction	64
Ectopic ureter	66
Ureteocele	67
Megaureter	68
Ureteral duplication	69
Anomalies of the urethera	70
Anomalies of the bladder	
Vesico-ureteric reflux (VUR)	75
Chapter Six: Radiology in renal anomalies	
Antenatal ultrasound	
Post-natal ultrasound	
Voiding cystourethrogram	
Nuclear medicine	
Computed tomography and magnetic resonance imaging	87
Patients and methods	
Results	_
Sonograms of some cases included in the study	
Discussion	
Recommendations and Conclusion	
Summary	
References	122

List of Tables

No.	Table	Page
Table(1)	Mouse mutations exhibiting morphogenesis and predominant accompanying renal phenotypes.	13
Table(2)	Syndromes associated with renal involvement and genes involved in their pathogenesis.	17
Table(3)	Syndromes with cystic kidney diseases.	39
Table(4)	Characteristics of Potter sequence.	44
Table(5)	Characteristic of ARPKD and ADPKD.	50
Table(6)	Grading of hydronephrosis using the Society for Fetal Urology grading system.	61
Table(7)	Grade of ureteral dilatation.	62
Table(8)	Abnormalities of the kidneys and urinary tract detectable on antenatal sonogram.	81
Table(9)	Investigations of prenatally detected nephrourological abnormalities-general guidelines for referral to nephrourology.	81
Table(10)	Imaging protocol for suspected perinatal renal anomalies	86
Table(11)	Range of newborn and maternal age.	92
Table(12)	Source of the selected newborns	93
Table(13)	List of cases with renal anomalies.	96
Table(14)	Abnormalities detected by ultrasound.	97
Table(15)	Average kidney length by U/S among cases included.	98
Table(16)	Deviation from normal range in right and left kidney length.	98
Table(17)	Average kidney width among cases in the study.	99
Table(18)	Average renal pelvic diameter among cases.	99

List of Figures

No.	Figure	Page
Figure(1)	Ureteric budding	6
Figure(2)	Renal collecting tubules.	7
Figure(3)	Renal cortex and renal medulla.	9
Figure(4)	Longitudinal section in a mature kidney.	10
Figure(5)	Blood supply of the kidney.	12
Figure(6)	Renal agenesis. Longitudinal sonogram of the right flank showing the liver and the linear hypoechoic psoas muscle with absent kidney.	21
Figure(7)	Longitudinal sonogram of the pelvis showing the bladder and pelvic kidney. The ectopic kidney is lying just above the bladder and the calyces and renal pelvis are dilated.	25
Figure(8)	Longitudinal sonogram of a crossed-fused ectopic kidney.	27
Figure(9)	Histology of human renal dysplasia.	28
Figure(10)	Ultrasonography of multicystic-dysplastic kidneys.	31
Figure(11)	Ultrasonography of hyperechoic renal medulla.	32
Figure(12)	U/S showing a right-sided abdominal mass with compressed renal tissue superiorly.	34
Figure(13)	CT scan showing Wilm's tumor.	34
Figure(14)	U/S showing angiomyolipomas in tuberous sclerosis.	42
Figure(15a)	Postmortem specimen of a patient with ARPKD.	45
Figure(15b)	U/S previously done to the same patient showing a large kidney, hyperechoic & full of cysts	46
Figure(16)	U/S showing multiple renal cysts of different sizes (ADPKD).	49
Figure(17a)	U/S showing a simple renal cyst in the upper pole of the kidney.	52
Figure(17b)	IVP of the same patient showing no communication with the renal pelvis.	53

Figure(18)	IVP showing a pelvicalyceal cyst	54
	communicating with the calyceal system.	
Figure(19)	The Society of Fetal Urology grading system of	62
	hydronephrosis	
Figure(20)	Longitudinal scan of the right kidney showing a	65
	large cyst in the kidney, and a subcapsular	
5 1 (0.1)	urinoma .The renal pelvis is also dilated.	0.7
Figure(21)	VCUG of a bladder showing the thin wall of a	67
Figure (00)	ureterocele and a large full bladder	70
Figure(22)	Ultrasound of renal duplication	70
Figure(23)	Posterior uretheral valve on voiding cystourethrogram	72
Figure(24)	Transverse view of the bladder showing	73
	markedly thickened bladder wall with dilated	
	tortous lower ureters	
Figure(25)	A VCUG of a 2 year-old boy with high grade VUR	77
Figure(26)	Longitudinal sonogram of the right kidney in a	84
1 1901 5(25)	normal neonate	
Figure(27)	U/S of the right kidney showing the medullae	85
	filled in with calcification (nephrocalcinosis).	
Figure(28)	Sex distribution among newborns included in	92
	the study.	
Figure(29)	Consanguinity between parents in the study.	93
Figure(30)	Clinical presentations of the newborns	94
	screened.	
Figure(31)	Percentage of antenatal care and antenatal	95
	U/S done.	
Figure(32)	Mode of delivery of the newborns included.	92
Figure(33)	Percentage of cases with renal pelvic diameter	99
	0.7 cm or more.	400
Figure(34)	Percentage of unilateral versus bilateral RPD.	100
Figure(35)	Percentage of the follow-up of cases with RPD.	100
Figure(36)	Longitudinal sonogram of a kidney with normal	115
	size & echogenecity and good differentiation.	
Figure(37)	Longitudinal sonogram of a normal kidney.	115
Figure(38a)	Longitudinal sonogram of a kidney showing	116
	dilated renal pelvis and calyces with normal	

	cortical thickness.	
Figure(38b)	Longitudinal sonogram of the same patient showing dilatation of both ureters (arrow) and the bladder is full. This patient was diagnosed to have PUV.	116
Figure(39)	Longitudinal sonogram showing a kidney displaced down to the pelvis.	117
Figure(40)	Longitudinal sonogram of a kidney showing dilated RPD (0.8 cm) and upper ureter.	117
Figure(41a)	Longitudinal sonogram of the right kidney with normal size&echogenicity and good differentiation (right sonogram) with a dilated RPD 1.08 cm (left sonogram).	118
Figure(41b)	Follow-up of the same patient after 2 months showing persistent dilatation of the PRD.	118
Figure(42a)	Longitudinal sonogram of the kidney showing increase in size (9.6*6.2 cm) and echogenicity with poor differentiation and multiple cysts.	119
Figure(42b)	Longitudinal sonogram of the same patient with higher frequency showing multiple- sized cysts with subcortical cysts (a case of mostly ADPKD).	119

Abbreviations

99mTc	Technetium-99m
ACE	Angiotensin converting enzyme
AD	Autosomal dominant
ADPKD	Autosomal dominant polycystic kidney disease
APD	anterior-posterior diameter
AR	Autosomal recessive
ARPKD	Autosomal recessive polycystic kidney disease
Bmp	Bone morphogenetic proteins
BOR	Branchio-oto-renal syndrome
CAKUT	Congenital abnormalities of the kidney and urinary tract
cAMP	Cyclic adenosine mono-phosphate
CDs	Collecting ducts
CDG	Cognitive disorder of glycosylation syndrome
CEC	Central echo complex
CKDs	Cystic kidney diseases
C-myc	C-myelocytomatosis
CNS	Central nervous system
CRF	Chronic renal failure
СТ	Computed tomography
DM	Diabetes mellitus
DMSA	dimercaptosuccinic acid
DTPA	diethylenetriaminepentaacetic acid
EGFR	Epidermal growth factor receptor
ESRD	End-stage renal disease
Eya1	Eyes absent 1 gene
F/U	Follow-up
Fgf	Fibroblast growth factor
Foxd1	The forehead/ winged helix transcription factor
Gdnf	Glial-derived neurotropic factor
Gpc3	Glypican 3 glycoprotein
HUN	Hydroureteronephrosis
IVU	Intra-venous urography
MAG-3	Mercaptoacetyltriglycine-3
MCDK	Multi-cystic dysplastic kidneys
MRI	Magnetic resonance imaging
mRNA	Messenger ribosomal nucleic acid

MRU	Magnetic resonance urography
NICU	Neonatal intensive care unit
Odd-1	Odd-Skipped 1 gene
Pax2	Paired box gene 2
PKD	Polycystic kidney disease
PKD1&2	Polycystic kidney disease gene 1&2
PND	Prenatal diagnosis
PUV	Posterior uretheral valve
Rar-	Retinoic-acid receptor family
alphaβ	
RCAD	Renal cysts and diabetes syndrome
Ret	Tyrosine kinase receptor
RPD	Renal pelvic diameter
SD	Standard deviation
SFU	Society for Fetal Urology
U/S	Ultrasound
UD Gr	Grade of ureteral dilatation
UPJ	Uretero-pelvic junction
UPJO	Uretero-pelvic junction obstruction
UTI	Urinary tract infection
V2R	Vasopressin V2 receptor antagonist
VCUG	Voiding cysto-urethrogram
VUR	Vesico-ureteric reflux
YAG	Yttrium aluminium garnet laser

Introduction

By renal anomalies we mean disordered renal embryogenesis. Anomalies involving the kidney and urinary system are common. The true incidence of urinary tract anomalies is difficult to ascertain. The reported incidence of many anomalies reflects ascertainment bias because data are often derived from symptomatic individuals (Lee &Diamond, 2009).

Nevertheless, many renal anomalies remain asymptomatic and undiagnosed in early life (Limvongse and Cassidy,2004). Developmental abnormalities of the renal tract accounts for 30% to 50% of end-stage renal disease in children (Seikaly et al; 2003).

Abnormalities which could be observed include hydronephrosis, which is the most common abnormality detected, renal cystic disease, renal agenesis, ectopic kidneys, renal duplex system, lower urinary tract anomalies, and even tumours (Diamond and Peters, 2004).

Ultrasound is a safe and accurate imaging method in the evaluation of the urinary tract, and being non-invasive, nonionizing and a relatively inexpensive examination, it can often make the preliminary diagnosis, stream line the work-up and be used for follow-up studies (Seeds et al.,1986).

With recent improvements in equipment and technical advances in prenatal ultrasonographic diagnosis, kidney and urinary tract anomalies are increasingly detected in utero. However, in oligohydramnios and other rare situations, prenatal

١

ultrasonographic diagnosis may be unable to detect these congenital anomalies (Tsuchiya et al., 2003).

Also, the recent widespread use of postnatal ultrasound has led to many efforts at screening for congenital kidney and urinary tract abnormalities. However, a standard screening methodology, criteria defining abnormalities and follow-up procedures remain to be established (Yoshida et al.; 2003).

Aim of the work

- Our hypothesis is that urinary tract anomalies are relatively common. The early detection of these anomalies before clinical presentation can save the patient serious morbidities such as repeated urinary tract infection, renal scarring and chronic renal failure.
- The aim of this study is to screen 200 potentially normal Egyptian newborns born in the department of obstetrics, Kasr El-Aini hospital, or presenting for normal check-up in outpatient clinics of Abu-ElReech hospital, in the period from October 2008 to June 2009, for assessment of the value of abdominal ultrasound in the early detection of renal anomalies before renal scarring.

Chapter One

<u>Development of the Kidney (Overview of Human</u> <u>Morphogenesis)</u>

Human kidney development begins at the fifth week of gestation. The first functioning nephrons are formed by week 9. By 32 to 34 weeks, nephrogenesis is completed after which no new nephron units are formed. There is increasing evidence that the number of nephrons formed at birth is a determinant of renal function later in life (Potter et al.; 1972).

Three sets of excretory organs or kidneys develop in the human embryos: the pronephros, the mesonephros and the metanephros. The first set of kidneys (the pronephros) are rudimentary and non functional. The 2nd part of kidneys (the mesonephros) are well developed and function briefly. The third set of kidneys (the metanephros) become the permanent kidneys (Roodhooft et al.;1984)

The metanephros or permanent kidneys begins to develop early in the fifth week and start to function about 4 weeks later. Urine formation continues throughout fetal life. Urine is excreted in the amniotic cavity and mixes with the amniotic fluid (Potter et al.; 1972).

The mammalian kidney derived from two parts of the metanephros. The first part is the ureteric bud (metanephric