IMMUNOHISTOCHEMICAL EXPRESSION OF HER-2/neu RECEPTORS IN GASTRIC CARCINOMA

The thesis to be submitted for the partial fulfillment of the requirement of the **M.Sc.** degree in Pathology

By

ROFANDA MOHAMED BAKEER

Supervisors

Prof. Dr. ELIA ANIS ISHAK

Professor of Pathology Faculty of medicine, Cairo University

Prof. Dr. MENAR MOHAMED AYOUB

Professor of Pathology Faculty of medicine, Cairo University

Prof. Dr. SONIA LABIB ABD EL-FATTAH

Professor of Pathology National Research Centre

Faculty of medicine Cairo University 2009

Acknowledgment الحمد لله رب العالمين

First and above all, my deepest gratitude and thanks to $oldsymbol{Allah}$ for achieving any work in my life.

I express my deepest gratitude to **Professor Dr. Elia Anis**, Professor of Pathology, Pathology Department, Faculty of Medicine, Cairo University, for suggesting this interesting and important subject of the thesis, supplying the basic items of this work and for his kind supervision and valuable criticism.

I am very thankful to **Prof.Dr.Menar Ayoub**, Professor of Pathology, Pathology Department, Cairo University, for her kind supervision, meticulous advices and expert guidance.

I also express my sincere appreciation to Prof.Dr.Sonia Labib, Professor of Pathology, Pathology Department, National Research Centre, for her kind supervision, and her important suggestions.

Also my thanks go to **Prof. Dr. Gamal Abdel Aty** for doing the statistics of this work.

I cannot forget the patience, the love and the support of my kind parents, loving brother and sister in-law.

Last but not the least, my great appreciation to my parents in-law for their encouragement and enthusiasm.

Finally, without the serious help and warm feelings of my darling husband this work would have never seen light.

ABSTRACT

Cancer of the stomach shows increasing rates of mortality and morbidity in the world. Gastric adenocarcinoma is the second leading cause of cancer specific mortality worldwide and efforts intended for prevention and early detection of gastric carcinoma are effective and yet important

HER-2/neu amplification and overexpression are currently attracting attention, as these factors can be used as both prognostic and predictive marker. Alternation of HER-2/neu has been implicated in the carcinogenesis and is frequently observed in a variety of tumors.

This study aimed to evaluate HER-2/neu expression in gastric carcinomas and the correlation between its expression and the clinicopathological characteristics of tumors was evaluated.

This study included thirty cases of primary gastric carcinoma from patients who underwent radical or partial gastric resection which were referred to pathology department at Kasr El-Aini hospitals and a private laboratory between January to December 2007

The age of the cases is ranged between 30 and 76 years with a mean age 53 years. Thirteen cases were females and 17 cases were males.

Key Words:

Anatomy of the stomach, Histology of the stomach, Gastric carcinoma, Immunohistochemistry of gastric carcinoma

CONTENTS

Introduction	9
Aim of the work	11
Review of Literature	12
• Anatomy of the stomach	12
Histology of the stomach	13
• Gastric carcinoma	
Immunohistochemistry of gastric carcinoma Gastric carcinoma markers HER-2/neu	35
Materials and methods	40
Results	42
Figures of H&E and Immunohistochemical pattern of Hingastric carcinoma	
Discussion	59
Summary	63
Conclusion and recommendations	65
References	66
Arabic summary	81

List of Abbreviations

ABC: Avidin-Biotin Complex

AJCC: American Joint Committee on Cancer

APUD: Amine precursor uptake and decarboxylation

CISH: Chromogenic insitu hybridization

CK: Cytokeratine

COX-2: Cyclooxygenase 2

CSA: Catalyzed Signal Amplification

EGF: Epidermal growth factor

FISH:Fluorescence insitu hybridization

GSCs: Gastric stump cancers

H&E: Hematoxylin and Eosin

HER-2: Human epidermal growth factor receptor -2

H. pylori: Helicobacter pylori.

HRP: Horseradish peroxidase

IARC: International Agency for Research on Cancer

IHC: Immunohistochemistry

LSAB: Labeled Streptavidin Biotin

Mab: Monoclonal antibodies

MUC: Mucinous adenocarcinoma

N.C.I: National Cancer Institute

NSCLC: Non-small cell lung carcinoma

NSE: Neuron-specific enolase

PAP Method: Peroxidase anti-peroxidase method

PGC: Papillary gastric carcinoma

SCC: Squamous cell carcinoma

SmCC: Small cell carcinoma

SRC: Signet ring cell carcinoma

WHO: World Health Organization

List of Figures

- Figure (1): Gastric Anatomy.
- Figure (2): Gastric Histology.
- Figure (3): Gastric Cells.
- Figure (4): Macroscopic appearance of Gastric carcinoma.
- Figure (5): Tumor T staging.
- **Figure (6):** A case of infiltrating gastric adenocarcinoma grade II showing moderate nuclear pleomorphism & mitotic figures.
- **Figure (7):** Infiltrating adenocarcinoma of the stomach grade II showing malignant epithelial cells with moderate nuclear anaplasia arranged in distorted acinar pattern.
- **Figure (8):** Infiltrating gastric adenocarcinoma, small cell type with small loosely cohesive monotonous cells.
- Figure (9): Higher power of the previous case revealing round & ovoid nuclei.
- **Figure (10):** Signet ring gastric carcinoma formed of signet ring cells with compressed hyperchromatic nuclei and vacuolated cytoplasm with moderate desmoplastic stroma.
- **Figure (11):** The intervening stroma of the previous case showing moderate desmoplastic reaction and inflammatory cells infiltration.
- **Figure (12):** Mucinous adenocarcinoma of the stomach formed of groups of malignant hyperchromatic cells arranged in fused acini with evidence of extracellular mucin.
- **Figure (13):** Infiltrating adenocarcinoma of the stomach showing distorted and diffused acinar pattern with marked nuclear anaplasia.

- **Figure (14):** Positive immunohistochemical staining of HER-2/neu in breast carcinoma, as positive control.
- **Figure (15):** Immunohistochemical staining of HER-2/neu in grade II gastric adenocarcinoma with strong membrane staining.
- **Figure (16):** HER-2/neu membranous staining in diffuse gastric adenocarcinoma small cell type.
- **Figure (17):** Infiltrating gastric adenocarcinoma, showing diffuse membrane staining of HER-2/neu.
- **Figure (18):** Infiltrating adenocarcinoma of the stomach grade II showing negative staining for HER-2/neu.
- **Figure (19):** Distorted and fused acini in infiltrating adenocarcinoma of the stomach showing negative membranous staining of HER-2/neu.

List of Graphs

- **Graph (1):** Age and sex incidence in gastric carcinoma cases.
- **Graph (2)**:Distribution of the pathological types among the studied gastric carcinoma cases.
- **Graph (3):** Distribution of the tumor grade among the studied gastric carcinoma cases.
- **Graph (4):** Distribution of the tumor T stage among the studied gastric carcinoma cases.
- **Graph (5):** Distribution of the tumor N stage among the studied gastric carcinoma cases.
- **Graph(6):** Distribution of the HER-2/neu positivity among the studied gastric carcinoma cases.
- **Graph(7):** Distribution of the HER-2/neu positivity and tumor histological type of gastric carcinoma cases.
- **Graph (8):** Distribution of the HER-2/neu positivity and tumor grade in gastric carcinoma cases.
- **Graph (9):** Distribution of the HER-2/neu positivity and tumor T stage in gastric carcinonma cases.
- **Graph (10):** Distribution of the HER-2/neu positivity and tumor N stage in gastric carcinoma cases.

List of Tables

Table (1): Age and sex incidence in gastric carcinoma cases.

Table (2): Type incidence in gastric carcinoma cases.

Table (3): Grade incidence in gastric carcinoma cases.

Table (4): Tumoral T stage in gastric carcinoma cases.

Table (5): Tumoral N stage in gastric carcinoma cases.

Table (6): Relation between HER-2/neu positivity and tumor histological type of gastric carcinoma cases.

Table (7): Relation between HER-2/neu positivity and grade in gastric carcinoma cases.

Table (8): Relation between HER-2/neu positivity and T stage in gastric carcinoma cases.

Table (9): Relation between HER-2/neu positivity and N stage in gastric carcinoma cases.

Introduction

Gastric cancer is one of the most common tumors and remains the second leading cause of cancer mortality in the world (*Kelley & Duggan*, 2003). The interaction of both environmental and gastric factors contributes to the etiology and pathogenesis of these aggressive cancers, mainly smoking and alcohol consumption, besides dietary habits and bacterial infection by Helicobacter pylori in gastric cancer (*Tahara*, 2004).

More than 95% of the gastric carcinoma consists of adenocarcinomas. (*Parkin et al., 2001*) which has been classified by *Laurén (1951 and refined 1965*) into two main histological types, intestinal and diffuse, its incidence has markedly decreased in some countries, such as United States and England. But it remains inordinately high in others such as Japan, Chile and Italy (*Keller, 2002*).

Gastric carcinoma is extremely rare below the age of 30 years; thereafter it increases rapidly and steadily to reach the highest rates in the oldest age groups, both in males and females. The intestinal type rises faster with age than the diffuse type; it is more frequent in males than in females. Diffuse carcinoma tends to affect younger individuals, mainly females. (*De Vries et al.*, 2007).

Molecular genetic analyses have indicated that transformation of normal epithelial cells into a cancer is a multi- step process associated with the progressive accumulation of abnormalities in DNA repair genes, tumor suppressor genes, oncogenes, cellular growth factors, surface receptors, and cellular adhesion molecules (*Marmor et al.,2004*). Structural and functional alterations of human epidermal growth factor receptor -2 (HER-2 /neu) also known as c-erbB-2 proto-oncogene have been reported in different steps of carcinogenesis including initiation, promotion and progression (*Schlessinger,2000*).

Survival of patients with advanced gastric cancer treated with palliative chemotherapy remains low. New therapies are urgently needed. A better understanding of the molecular basis of cancer has contributed to the development of rationally designed molecular targeted therapies, which interfere with the signaling cascades involved in cell differentiation, proliferation, and survival (*Wagner et al.*, 2006).

HER-2 proto-oncogene is located at chromosome 17q21, Alternation of which has been implicated in the carcinogenesis and is frequently observed in a variety of tumors. (*Pauletti et al.*, 2000). HER-2/neu amplification and overexpression are currently attracting attention, as these factors can be used as both prognostic and predictive marker (*Hofmann et al.*, 2007). It is remarkable to consider that cellular transmembrane receptor contents might be good biological markers for selecting candidates for possible therapy by an HER-2/neu- targeting strategy. Favorable clinical results with anti HER-2/neu antibodies in breast cancer have led to the analysis of HER-2/neu expression in other solid tumors (*Vogel et al.*, 2002).

HER-2/neu has been reported in 10-35 % of gastric carcinomas (*Dursun et al.*, 1999, *Kuraoka et al.*, 2003, *Park et al.*, 2006 and *Raziee et al.*, 2007), the intestinal type shows higher prevalence of HER-2/neu expression in contrast to diffuse type (*Raziee et al.*, 2007).

The prognosis of patients with gastric cancer depends on several clinical and pathological variables, such as age of onset, gastric wall invasion, tumor location, lymph node involvement, and systemic metastases (Siewert et al., 1999). However, there are conflicting results in studies of HER-2/neu with regard to HER-2/neu relationship to prognosis in gastric cancer patients (Park et al., 2006). Dursun et al. (1999) reported that although a higher incidence of HER-2/neu expression was found in advanced carcinomas however, there was no significant association between its positivity and depth of invasion, tumor size, and lymph node metastasis. Satiroglu-Tufan et al. (2006) revealed a significant association between HER-2/neu positivity and stage III-IV tumors. Some authors revealed that HER-2/neu expression in gastric carcinomas has been related to their aggressive clinical behavior and poor survival rate (Tsugawa et al., 1993, Chariyalertsak et al., 1994 and García et al., 2003).

AIM OF THE WORK

In this study, the expression of HER-2/neu receptors was investigated in gastric carcinomas and the correlation between HER-2/neu expression with histopathological features of gastric carcinoma and its association with other prognostic factors was evaluated.

Review of Literature

The anatomy of the human stomach:

The stomach is a hollow, distensible organ with a mean volume of 1,500 cc that resides in the upper abdomen. The stomach is divided into three major segments the cardia, the fundus and the body. The cardia surrounds the superior opening of the stomach. The rounded portion superior to the body and to the left of the cardia is the fundus and rests just below the left hemidiaphragm (*Mostafa et al., 2006*).

The body of the stomach is bordered superiorly by the fundus and distally by the antrum. The region of the stomach that connects to the duodenum is the pylorus. It has two parts, the pyloric antrum, which connects to the body of the stomach, and the pyloric canal, which leads into the duodenum (*figure 1*). The pylorus communicates with the duodenum of the small intestine via the pyloric sphincter (valve). This valve regulates the passage of chyme from stomach to duodenum and it prevents backflow of chyme from duodenum to stomach (*Tortora and Grabowski, 2002*). The medial and lateral curvatures of the stomach are known as the lesser and greater curvatures respectively. (*Ian & William, 2005*).

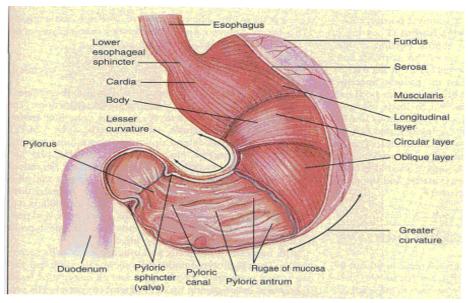


Fig. (1) Gastric Anatomy (Tortora and Grabowski, 2002)

Normal Histological Features:

The five gross gastric regions: cardia, fundus, body, antrum and pylorus show correspondence to the three major microscopic types of gastric mucosa: cardiac, fundic and pyloric (antral), with transitional areas in between. The gastric mucosa consists of surface epithelium, gastric pits and gastric glands. All gastric glands have two major components: foveolar (crypt, pit) and secretory portion. The foveolae represent the most important area of genesis of gastric carcinoma (*Owen*, 1997). The differences among the various types of gastric mucosa depend on the relative proportions between foveolae and secretory portions and the microscopic composition of the latter. The gastric glands extend from the muscular mucosa to the stomach lumen via gastric pits. The foveolar cells lining the surface and gastric pits are identical throughout the stomach. Glands differ in different regions of the stomach. Gastric pits occupy approximately 25% of the mucosa. Pits lie parallel to one another. These are separated by the lamina propria. There is more lamina propria separating the pits than between the glands(figure (2))((Lewin et al., 1992).

In normal gastric biopsy degree of pits and glandular separation should be the same throughout the biopsy (*Sarbia et al.*, 2002).

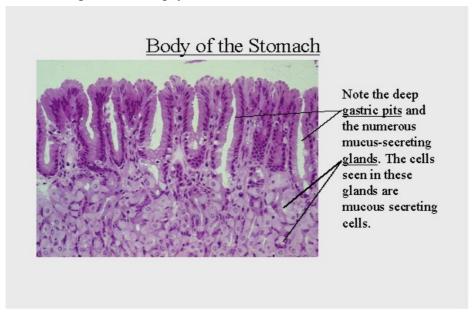


Fig.(2) Gastric Histology (Tortora and Grabowski, 2002)

The cardiac predominantly glands are mucus secreting surrounding of the glands the entrance esophagus. The mucous secreting cells (goblet cells) line the luminal surface of the stomach, gastric pits and gastric glands (Fielding & Hallissey, Glands are less coiled than in the antral glands. These glands 2005). lumina and shallow pits than the antropyloric pits. This have may contain a few APUD cells that synthesize monoamines. In zone area, where this zone is continuous with the transitional the few parietal cells may be present (Chandrasoma zone, 2000).

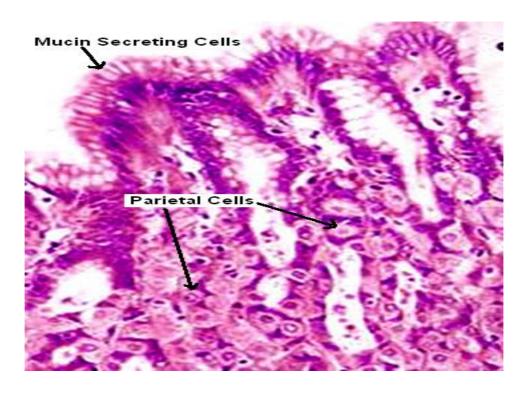


Fig.(3) Gastric cells(Menard, 2004)

The **fundic glands**, proper gastric glands or principal gastric glands are responsible for the secretion of gastric acid. The term oxyntic (Greek: acid- forming) is also used as an indicator of this glandular zone. The mucosa here is much deeper than in the cardiac zone and contains a greater number of glands. Each principal gastric gland is composed of four kinds of cells. (*Snell*, 2000). The parietal cells