Role of MRI Arthrography In Assessment Of Traumatic Anterior Shoulder Instability

A thesis submitted for partial fulfillment of M.D. degree in Radiodiagnosis

By Dr

Fath Allah Fathy Fath Allah Awad

M.Sc. Radiodiagnosis

Under Supervision of

Prof Dr. AHMED MOSTAFA MOHAMMED

PROFESSOR OF RADIODIAGNOSIS, AIN SHAMS UNIVERSITY

Prof Dr. AHMED FATHY ABD EL GHANI

ASS PROFESSOR OF RADIODIAGNOSIS, AIN SHAMS UNIVERSITY

Dr. AHMED MOHAMMED M.ABD RABOH

LECTURER OF RADIODIAGNOSIS, AIN SHAMS UNIVERSITY

Dr. HAITHAM KAMEL O. HAROUN

LECTURER OF ORTHOPEDIC SURGERY, AIN SHMS UNIVERSITY

> Faculty of medicine Ain Shams University 2016

بسم الله الرحمن الرحيم (قالم ا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم)

حدق الله العظيم سورة البقرة آية (32)

CONTENTS

•	Acknowledgement	I
•	List of abbreviations	II
•	List of figures	IV
•	List of Tables	IX
•	Introduction and aim of work	1
•	Anatomy of the Shoulder joint	5
•	Pathophysiology of Anterior Shoulder Instabi	<i>lity –</i> 29
•	Technique of MRI Arthrography in	shoulder
	examination	48
•	Patients and Methods	62
•	Results	68
•	Illustrative cases	76
•	Discussion	98
•	Summary and conclusion	110
•	References	113
•	Arabic summary	

Abstract

The study included 60 patients with glenohumeral instability. For every patient conventional MRI, intra-articular contrast injection was done followed by MR arthrography (MRA). The preliminary results showed the role MRA in diagnosing the causes of anterior shoulder instability. Correlation between conventional MRI & MRA and arthroscopy to clarify the role of MRA in more accurate diagnosis of glenohumeral instability. Combined conventional MRI & MR arthroghraphy is promisable in defining the type of instability

(Key Words: Conventional MRI, MRA-Shoulder instability, Bankart, shoulder dislocation)

Acknowledgement

First and formost, I feel always indebted to GOD the kindest and the most merciful for blessing my steps in life.

- It is a great honor for me to work under supervision of Prof. Dr. Ahmed Mostafa Mohammed Professor of Radio-diagnosis, Faculty of Medicine, Ain Shams University. His kind supervision and parental attitude could not be denied. Also, his continuous guidance and kind encouragement throughout this work upgraded its quality.
- I also wish to express my great thanks and deepest gratitude to ASS.Prof. Dr.Ahmed Fathy Abd El Ghani professor of Radio-diagnosis, Faculty of Medicine, Ain Shams University. His valuable advice gave me in order to put this thesis in an acceptable form.
- Endless thanks to my close friend Dr Ahmed Mohammed M.Abd Raboh lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University. who suggested the subject and helped me to take the first step in, also for his kind guidance and great help during this work.
- Also much thanks to my friend Dr Haitham Kamel O. Haroun lecturer of orthopedic surgery Faculty of Medicine, Ain Shams University. Who helped me with his kind guidance and great help during this work?
- I'm also thankful to all the my family, mother, wife and sisters for their kind support and love which allowed the completion of this study
- Finally special thanks to my close friend **Dr Mohammed Ibrahim** for helping me in gathering my

 cases in this thesis.

List of Abbreviations

	T
ABER	Abduction external rotation
ALPSA	Anterior Labro-ligamentous Periosteal Sleeve
	Avulsion
AP	Antro-posterior
BLC	Biceps labral complex
Ст	Centimeters
CT	Computed Tomography
3D	Three dimensions
FOV	Field of view
FAT SAT	Fat saturation
GLAD	Gleno-Labral Articular Disruption
GAGL	Glenoid avulsion of the glenohumeral ligament
HAGL	Humeral Avulsion of Glenohumeral Ligaments
B-HAGL	Bony -Humeral Avulsion of Glenohumeral
	Ligaments
IGL	Inferior glenohumeral ligament

List of Abbreviations

List of Hoor eviations	
IGLC	Inferior glenohumeral ligament complex
MRI	Magnetic Resonance Imaging
Mm	Millimeter
MGHL	Middle glenohumeral ligament
MSK	Musculoskeletal
Ml	Milliliter
NEX	Number of excitations
PD	Proton density
SGL	Superior glenohumeral ligament
TP	True positive
TN	True negative
TI	Inversion time
TR	Repetition time
TE	Echo time
STIR	Short time inversion recovery

Page	<u>Figure</u>
6	Figure 1 diagrammatic illustration for the clavicle
7	Figure 2 Diagrammatic illustration of the scapula
8	Figure 3 types of acromion
9	Figure 4 Diagrammatic illustration of the proximal humerus
10	Figure 5. Diagrammatic illustration of the glenohumeral joint
11	Figure 6 Diagrammatic illustration of the labrum
13	Figure 7 Types of Attachment of the Biceps-Labral Complex
13	Figure 8 Biceps labral complex (BLC) attachments in coronal T1 fat sat arthrography
14	Figure 9. fat suppressed oblique sagittal T1 weighted MR arthrogram image, demonstrating the six labral zones of the glenoid labrum
16	Figure 10 fat suppressed axial T1 weighted MR arthrogram image with corresponding diagrams , demonstrating types of capsular attachment
17	Figure 11 Diagrammatic illustration of the glenohumeral ligaments

19	Figure 12 Fat suppressed axial T1-weighted MR arthrogram image demonstrates the anterior band of the inferior glenohumeral ligament
20	Figure 13 Fat suppressed oblique sagittal T1-weighted MR arthrogram image, demonstrating the anterior and posterior bands of the inferior glenohumeral ligament
21	Figure 14 fat suppressed oblique sagittal T1-weighted MR arthrogram image demonstrating the middle glenohumeral ligament
21	Figure 15 An axial fat suppressed T1-weighted MR arthrogram of a Buford complex
22	Figure 16 fat suppressed axial T1-weighted MR arthrogram image demonstrates the superior glenohumeral ligament
23	Figure 17 Sagittal oblique T2W fast spin-echo sequence demonstrating the normal coraco-humeral ligament
24	Figure.18 Diagrammatic illustration of rotator cuff and long head of biceps
25	Figure 19 A–B, Illustrations in coronal sagittal (A) plane and corresponding sagittal MR proton density–weighted arthrogram (b) show boundaries of rotator interval.
28	Figure 20 Subacromial bursa and Subscapular bursa
28	Figure 21 Diagram of normal bursae surrounding the shoulder joint
29	Figure 22 illustration of most common shoulder dislocation injury
34	Figure 23 illustration of mechanism of hill sachs injury
35	Figure 24 illustration of hill sach's injury in different radiological examination

36	Figure 25 illustration of osseous Bankart injury in different radiological examination
37	Figure 26 sagittal oriented illustration demonstrating the six labral zones of the glenoid labrum
38	Figure 27 chronic Bankart lesion on A axial T1 MR-arthrogram and B oblique-sagittal T1 fat sat MR-arthrogram (ABER position)
39	Figure 28 Bankart lesion. Anterior inferior glenoid rim fracture and anterior labral avulsion
40	Figure 29 Axial and (ABER position) oriented illustration demonstrating the surgical classification of the Bankart lesion
42	Figure 30 Perthes lesion A and B diagrammatic in axial and (ABER position) respectively, C axial T1 axial MR arthrograms, D T1 MR-arthrogram (ABER position), E axial fat-suppressed T1-weighted MR arthrograms
43	Figure 31 ALPSA lesion A and B diagrammatic in axial and C in (ABER position) respectively, D axial T1 axial MR arthrograms, E axial fat-suppressed T1-weighted MR arthrograms and F axial T2 MR
44	Figure 32 GLAD lesion A diagrammatic in axial orientation, B and C in (ABER axial T1 axial MR arthrograms , D axial fat-suppressed T1-weighted MR arthrograms the lesion blotted by white head arrow in B, white arrows in C and D noted the capsular tear in D blotted by red arrow
45	Figure 33 HAGL lesion A coronal –fat suppressed T1-weighted MR arthrograms and B sagittal oblique fat suppressed T1 MR arthrograms , noted the escape of the contrast and disrupted ligament both band
46	Figure 34 HAGL lesion A coronal illustration, B coronal MRI TI arthrogram
47	Figure 35 GAGL lesion A Axial T1-weighted MR arthrograms and B sagittal oblique T1 MR arthrograms ,C coronal fat suppressed T1 MR arthrograms and D coronal oblique T1 MR arthrograms

52	Figure 36. Radiograph shows initial position of humeral head
53	during arthrography of left shoulder
54	Figure 37 A Drawing shows patient in prone position for posterior approach to fluoroscopically guided arthrography of shoulder
55	Figure 38 Axial T1-weighted fat-saturated magnetic resonance arthrogram image shows artifact due to inadvertent injection of air into the joint cavity
58	Figure 39 sequential Axial T1 fat-sat post contrast
59	Figure 40 sequential Coronal oblique T1 Fat Sat Post Contrast
60	Figure 41 sequential Sagittal oblique T1 Fat Sat Post Contrast
61	Figure 42. sequential Abduction external rotation T1 Fat Sat Post Contrast (ABER)
68	Figure 43 the frequency according to sex
72	Figure44 Comparison between MRA and arthroscopic results as regards number of cases
73	Figure 45 Comparison between MR and conventional MRI results as regards number of cases
74	Figure 46 Comparison between conventional and MRA techniques as regards their sensitivities
75	Figure 47 Comparison between conventional and MRA techniques as regards their predictive values for a positive test
75	Figure 48 Comparison between conventional and MRA techniques as regards their predictive values for a negative test
77	Figure 49 case 1 ALPSA lesion with Hill Sach's injury

79	Figure 50 case 2 Bankart injury with torn anterior capsular and inferior gluon-humeral ligament complex
81	Figure 51 case 3 GLAD injury and Hill sach's lesion
83	Figure 52 case 4 Perthes injury and Hill sach's lesion
85	Figure 53 case 5 Cartilaginous and bony Bankart's lesion and Hill sach's lesion
87	Figure 54 case 6 ALPSA lesion and Hill sach's lesion
89	Figure 55 case 7 GAGL lesion
91	Figure 56 case 8 HAGL lesion
93	Figure 57 case 9 Perthes lesion and Hill sach's lesion
95	Figure 58 case 10 Cartilaginous Bankart lesion
97	Figure 59 case 11 HAGL lesion, Hill Sach's full thickness tear supraspinatus and long head biceps dislocation.

List of tables

<u>Page</u>	<u>Table</u>
49	Table 1 Different Tissue appearance by MR pulse sequence
56	Table 2 Arthrographic techniques and their drawbacks
69	Table 3 Conventional MRI result compared to the arthroscopic findings
70	Table 4 lesions positive predictive value
71	Table 5 MRA results compared to the arthroscopic findings
72	Table 6 lesions positive predictive value 2
73	Table 7 The frequency of the different pathological lesions detected in gleno-humeral joint instability either by conventional MRI and MRA.

Introduction

The shoulder joint is a simple structure that provides complex function. It is the most mobile joint in the body, and it is the joint that is most frequently dislocated. Normal shoulder have a certain degree of laxity due to minimal bony restraint of the joint, which in turn allows the widest range of motion of any joint in the body (Simon et al., 2005)

When shoulder dislocation occurs in adolescents and children, it may be a very bad experience for the patient; although certainly not life threatening, recurrent sublaxation or dislocation is clearly lifestyle threatening and can effectively disable an otherwise active individual. The rate of recurrence in later years is at least 70%. (Herold T et al., 2006)

Antero-inferior dislocation is the most frequent cause of shoulder instability. The gleno-humeral ligaments, particularly the inferior gleno-humeral ligament are currently believed to represent the major passive stabilizers of the shoulder (Asem A. AL-Hiari., 2008).

A number of variants of antero-inferior labroligamentous lesions (Bankart and Bankart variant lesions) have been described, The classical Bankart lesion is described as detachment of the anteroinferior labrum with its associated glenohumeral ligament complex. Neviaser described the anterior labral periosteal sleeve avulsion (ALPSA) lesion as a tear of the anteroinferior labrum without rupture of the anterior capsular periosteum (Jaideep et al 2010).

The Perthes lesion is a labroligamentous avulsion, as well, but with medially stripped intact periosteum. The glenolabral articular disruption (GLAD) lesion represents a superficial tear of the anterior labrum attached to a fragment of articular cartilage without associated capsuloperiosteal stripping. Since different types of anterior labroligamentous lesions require different surgical procedures, preoperative determination of lesions is of great importance. (Asem A. AL-Hiari., 2008).

Humeral avulsion of glenohumeral ligaments (HAGL) is an increasingly recognized cause of recurrent shoulder instability. HAGL lesions are the result of acute traumatic glenohumeral subluxation or dislocation. Anterior avulsion of the inferior