

ELECTRICAL POWER AND MACHINES DEPARTMENT

AI-Based Filter for Harmonic Suppression and Harmonic Flow Control in Electrical Power Networks

This Thesis is submitted in partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in Electrical Engineering (Power and Machines)

Presented by

Eng. Wael Mohamed Attia El-Mamlouk M.Sc. in Electrical Engineering, Cairo University

Supervised by

Prof. Dr. Metwally Awad El-Sharkawy

Electrical Power and Machines Department Faculty of Engineering – Ain Shams University

Dr. Hossam El Din Mostafa Attia

Electrical Department
Faculty of Industrial Education – Suez Canal University

Cairo - Egypt 2010

APPROVAL SHEET

AI-Based Filter for Harmonic Suppression and Harmonic Flow Control in Electrical Power Networks

This thesis is submitted by **Wael Mohamed Attia El Mamlouk** in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Electrical Engineering (Power and Machines).

The examining committee approve that the thesis meets the standard of the Ph.D. degree in electric power engineering.

Examining Committee:

<u>Name</u>	<u>Signature</u>
1- Prof. Dr. Mohamed Abd El-Latif Badr	
Faculty of Engineering – Ain Shams University, Cairo, Egypt	
2- Prof. Dr. Muwafak Ali Al-Tai	
Faculty of Computing, Engineering and Technology, Staffordsh	nire University,
Stafford, United Kingdom	
3- Prof. Dr. Metwally Awad El-Sharkawy	
Faculty of Engineering – Ain Shams University, Cairo, Egypt	
4- Dr. Hossam El Din Mostafa Attia	
Faculty of Industrial Education – Suez Canal University, Egypt	

Cairo - Egypt 2010

بسم الله الرحمن الرحيم

اقْرَأْ بِاسْمِ رَبِّكَ الَّذِي خَلَقَ (1) خَلَقَ الإِنسَانَ مِنْ عَلَقٍ (2) اقْرَأْ مِرَبُّكَ الأَكْرَمُ (3) الَّذِي عَلَّمُ بِالْقِلَمِ (4) عَلَّمَ الإِنسَانَ مَا لَمْ يَعْلَمُ (5)

حدق الله العظيم سورة العلق

STATEMENT

This thesis is submitted to Ain Shams University in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in Electrical Engineering

(Power and Machines).

The work included in this thesis is carried out by the author at the Electrical

Power and Machines Department, Ain Shams University. No part of this thesis

has been submitted for a degree or a qualification at any other university or

institute.

Name

: Wael Mohamed Attia El Mamlouk

Cairo 2010

ACKNOWLEDGMENTS

First, I would like to thank Allah for giving me the opportunity of being the person that I am and for endowing me with strength and eagerness to improve and develop myself; both practically and spiritually.

I would like to express my deep and sincere gratitude to **Prof. Dr.**Metwally Awad El-Sharkawy for his faithful and constant supervision, guidance and encouragement over a number of years. Acknowledgment is also due to **Dr.**Hossam Eldin Mostafa Attia, for his continuous and wholehearted assistance and encouragement throughout the accomplishment of this thesis. I'm gratefully indebted to both of them for they spared no effort to give me help and advice. Indeed, without their valuable advice and supervision, it would have been so difficult for this thesis to come to light.

Also, I would like to thank all faculty members in Electrical Power and Machines Department, who taught me in the postgraduate studies.

Finally, I would like to express due thanks and gratitude to my wife, parents and sister for their encouragement, appreciable support and care.

Eng. Wael El-Mamlouk

Dedicated to my mother, father and sister, the greatest family on earth.

And above all, to my beloved wife (Samah) and my children (Mayar, Ranna, Omar) for being so patient with me.

They were always there to encourage and support me.

ABSTRACT

Nonlinear loads and all kinds of static power converters inject harmonics into electrical power systems and, consequently, can affect other loads connected to the same system if significant harmonic voltage distortions are caused.

The main objective of the this thesis is to develop a new simple, efficient and reliable optimal Active Power Filter (APF) controller based on artificial intelligence techniques that could effectively capable to compensate and reduce current and voltage harmonic distortion to the limits defined by international standards.

The shunt APF topology is used for this study in conjunction with the shift method of the Multi-layer Artificial Neural Network (ML-ANN) for estimation of the power system harmonic currents and voltages at a dedicated point.

The simple structure of the shift method of the ML-ANN applied for estimating the value of the fundamental current is found to be powerful and accurate enough in the field of adaptive filtering.

A control scheme making use of two independent ML-ANNs is developed. The first ANN extracts the harmonic current components of the distorted line current signal and the second ANN estimates the fundamental component of the line voltage signal. The outputs of the two ANNs are used to construct a modulating signal by subtracting the desired source currents (fundamental frequency components) from the load signals (distorted signals) then divided by the fundamental signal to obtain the final compensation signals used in the modulation process.

The control technique used is based on the multi-loop feedback control schemes, which was originally used in the single-phase uninterruptible power supply equipment. This multi-loop feedback control method is used to implement the compensation scheme for the proposed APF design.

The proposed control strategy for the APF has been tested by applying it to a 13 bus test system consisting of Balanced Industrial Distribution System which is a typical medium-sized industrial plant. The system is extracted from a common system that is being used in many of the calculations and examples in the IEEE Color Book series.

The proposed controller and the test system were simulated by Matlab-Simulink software for many cases. Results showed that the proposed APF

control strategy effectively fulfills the required constraints with an optimal value of the performance index. With the new design, it requires less effort on the realization of the filter control circuit while maintaining a good filter performance when different constraints imposed on the filter as well as on the nonlinear load are under considerations.

The proposed shunt active filter using adaptive neural network (NN) extraction algorithm and PI-controller with Particle Swarm Optimization (PSO) control algorithms approach is adaptive, reliable and fast for harmonic compensation in the various changes in system operating conditions.

The proposed filter is used to reduce the harmonic current distortion resulting from some typical nonlinear loads. The nonlinear loads under study are an adjustable speed drive with a 6-pulse converter. The results showed that considerable reduction in the total harmonic current distortion is achieved for each of these applications.

LIST OF CONTENTS

ACKNOWLEDGMENT		
DEDICATION		
ABSTRACT		
LIST OF CONTENTS	III	
LIST OF TABLES	IX	
LIST OF FIGURES	XII	
LIST OF ABBREVIATIONS	XX	
CHAPTER 1 INTRODUCTION	1	
1.1 Power Quality Concepts	1	
1.2 Harmonic Pollution	3	
1.3 Harmonic Definitions	3	
1.4 Importance of Harmonic Studies		5
1.5 Harmonic Sources	7	
1.6 Point of Common Coupling Assumption	8	
1.7 Harmonic Limits	9	
1.7.1 The Harmonic Limits Based on IEEE 519-1992	9	
1.7.2 Limiting Harmonic Voltages Inside the Customer's Plant	9	
1.7.3 Voltage Distortion Limits	9	
1.7.4 Limiting Harmonic Currents at the Utility Metering Point	10	
1.7.5 Current Distortion Limits	10	
1.7.6 General Procedure for Applying Harmonic Limits	12	
1.7.7 Applying Harmonic Limits for Industrial Facilities	12	
1.8 General Harmonic Problems	14	
1.9 Effects of Harmonics on Some of Power System Component	15	
1.9.1 Conductor Overheating	15	
1.9.2 Capacitors	15	

1.9.3 Fuses and Circuit Breakers	15
1.9.4 Transformers	15
1.9.5 Generators	15
1.9.6 Utility Meters	16
1.9.7 Drives/Power Supplies	16
1.10 Factors Affecting Harmonics Flow in a Network	16
1.10.1 System Short Circuit Capacity	16
1.10.2 Loading Conditions	16
1.10.3 Transformer Connection	16
1.10.4 Capacitors	17
1.11 Harmonic Analysis and Simulation	18
1.11.1 Frequency Scan Analysis	19
1.11.2 Harmonic Analysis Using Simple Current Source	
Models	19
1.11.3 Harmonic Analysis Considering Fundamental	
Frequency Power Flow Results	20
1.11.4 Harmonic Power Flow Solutions	20
1.12 Objectives of the Thesis	21
1.13 Organization of the Thesis	22
CHAPTER 2 LITERATURE REVIEW OF ACTIVE	
POWER FILTER	24
2.1 Introduction	24
2.2 General Considerations for Harmonic Modeling	24
2.3 Adjustable Speed Drives (ASD) Review	25
2.3.1 Factors in the AC drive having an effect on harmonics	27
A) Using 6-Pulse Diode Rectifier	27
B) Using 12-Pulse Diode Rectifier	27
C) Using 24- Pulse Diode Rectifier	28

D) Using Phase Controlled Thyristor Rectifier	28
E) Using IGBT Bridge	28
2.3.2 ASD Classifications	29
A) The Configuration of DC Link	29
B) The Operation of Converter	29
2.4 Evaluating System Harmonics	29
2.5 Active power filter (APF)	31
2.5.1 Introduction to APF	31
2.5.2 Active Filter Ratings for Nonlinear Load Types	32
2.6 Active Power Filters Classifications	33
2.7 Conventional Methods Used for Harmonic Extraction	33
2.7.1 Classical Fourier Transform Based Extraction Method	34
2.7.2 High-Pass Filter Method	35
2.7.3 Low-Pass Filter Method	35
2.7.4 Synchronous Reference Frame Based Extraction Method	35
2.7.5 Instantaneous Reactive Power (IRP) Theory	36
2.7.6 Sine Multiplication Method	38
2.8 A.I. Techniques Used for Harmonic Extraction	38
2.8.1 Dead-Beat Control Algorithm	39
2.8.2 ADALINE Algorithm	39
2.8.3 Particle Swarm Optimizer (PSO)	40
2.9 Classification Design of the Power Circuit Configuration	41
2.9.1 Based on Converter Types	41
A) Voltage-Source Active Power Filter	42
B) Current-Source Active Power Filter	42
2.9.2 Based on the Topology	43
A) Series APF	43
B) Shunt APF	44
C) Series-shunt APF	46

2.9.3 Based on the number of phases	46
2.10 Control Strategy	47
2.10.1 Based on P-Q Theory	48
2.10.2 Based on Instantaneous Power Theory (IPT)	48
2.10.3 Based on Bacterial Foraging (BF)	48
2.10.4 Based on Neural Networks (NN)	48
2.10.5 Based on Fuzzy Logic Controller	50
CHAPTER 3 HARMONIC FLOW ANALYSIS	52
3.1 Introduction	52
3.2 Test System Study	52
3.2.1 Original Test System Description	52
3.2.2 Test System Parameters	54
3.2.3 Harmonic Analysis	55
3.3 Study Cases (without filter)	59
3.3.1 Selection of the Study Cases	61
3.4 Detailed Analysis of Some Different Cases	63
3.5 Results of study cases	71
3.5.1 Voltage THD results for all system buses	71
3.5.2 Current THD Results for Bus 51, 11 &29	73
3.6 Comparison for THD of All Cases	74
3.7 Conclusion	77
CHAPTER 4 EXTRACTION OF HARMONIC COMPONEN	TS
USING ARTIFICIAL NEURAL NETWORK	78
4.1 Artificial Neural Network Background	78
4.1.1 Introduction	78
4.1.2 Perceptron Architecture	79
4.1.3 Multiple Layers of Neurons	80

4.1.4 Learning Rules	81
4.2 Extraction of Harmonic Components	81
4.3 Architecture of the Proposed ML-ANN	82
4.3.1 Training of ML-ANN	82
4.3.2 Testing of ML-ANN	83
4.3.3 Select Alternative Network Architecture and Retraining	83
4.4 Test System	84
4.4.1 Study of ML-ANN Scheme with Test System	85
4.4.2 Training stage for the Test System	86
4.4.3 Training Study Cases	88
4.5 Testing Stage for the Test System	93
4.5.1 Testing for Neural Network 1	94
4.5.2 Testing for Neural Network 2	96
4.5.3 Testing for Neural Network 3	99
4.5.4 Comparison between the three networks	102
4.6 Management of harmonic distortion	104
4.7 Multi-Loop Feedback (ML-PP) Control in Active Power Filter	105
4.8 Appling (ML-PP) Control Scheme to the Study System	106
4.8.1 Estimation of the Proportional Gains	108
4.8.2 Control Scheme Filter Parameters	109
4.8.3 Voltage THD Measurements for System Buses	109
4.8.4 Current THD% Results for Bus 51, 11 &29	111
4.9 Analysis of the Results	113
CHAPTER 5 ACTIVE POWER FILTER USING PSO-TUNEI)
PI CONTROLLER	121
5.1 Introduction	121
5.2 Modified Multi-Loop Feedback Control Scheme	121
5.3 Estimation of PI Controller Gains	
J.J Estimation of F1 Condoner Gaills	123

PUBLICATIONS OUT OF THE THESIS	167
LIST OF REFERENCES	162
6.2 Recommendations for Future Work	161
6.1 Conclusions	159
FOR FUTURE WORK	159
CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS	
5.15 Final comparison of the ML-PI with the ML-PI/pso APF	157
5.14 Comparison between the three control schemes 5.15 Final comparison of the ML PLynith the ML PLynia APE	
	150
5.13.3 Performance testing of the Proposed (ML-PI/pso) Control Scheme	150
5.13.2 ML-PI/pso Control Scheme Filter Parameters 5.13.2 Performance testing of the Proposed (ML PI/pso)	150
5.13.1 ML-PI Based on PSO	148
5.13 Active Power Filter Based on PSO	148
5.12 Particle Swarm Optimization (PSO) Background	146
5.11 General Conclusion of the Study for Proposed ML-PI APF	144
5.10 Comparison between ML-PP and proposed ML-PI APF	140
5.9 Detailed Analysis of Some Cases	133
Controllers	133
5.8 Comparison between Single and Two Closed Loop Feedback	
5.7.2 Current THD Results for Bus 51, 11 &29	131
5.7.1 Voltage THD Results for All System Buses	130
5.7 Performance Testing of the Proposed (ML-PI) Control Scheme	128
5.6 Operation of the Proposed Control Scheme	126
5.5.2 Current Reference Only	125
5.5.1 Voltage Reference Only	125
5.5 Single Closed Loop with the PI Controller	125
5.4 PI-Control Scheme Filter Parameters	124

LIST OF TABLES

CHAPTER 1

Table (1.1) Harmonic voltage distortion limits in % of nominal	
fundamental voltage	10
Table (1.2) Harmonic current distortion limits (Ih) in % of IL	11
CHAPTER 2	
Table (2.1) Load Composition	25
Table (2.2) Summary of different nonlinear load types	32
CHAPTER 3	
Table (3.1) Per-Unit Line and Cable Impedance Data	54
Table (3.2) Transformers Data	54
Table (3.3) Generation, Load, and Bus Voltage Data	54
Table (3.4) Harmonic Source Data connected on Bus 49	55
Table (3.5) Plant Harmonic Voltage Distortion Summary	55
Table (3.6) Obtained results from Matlab simulink with harmonic	
load at bus 49	57
Table (3.7) Current Injection Model for ASD	60
Table (3.8) input cases at different locations with different loading	
Conditions	62
Table (3.9) THDv at all the system buses for cases 1 to 6	72
Table (3.10) THDv at all the system buses for cases 7 to 12	72
Table (3.11) THDv at all the system buses for cases 13 to 18	73
Table (3.12) THDi from bus 51 to buses 29 and 11 for cases 1 to 6	73
Table (3.13) THDi from bus 51 to buses 29 and 11 for cases 7 to 12	74
Table (3.14) THDi from bus 51 to buses 29 and 11 for cases 13 to 18	74